Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • News
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
  • Support Us
  • About
    • Our Story
    • CIFAR 40
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Staff Directory
    • Equity, Diversity & Inclusion
  • fr
  • Home
  • Bio

Follow Us

post_content

Fraser Armstrong

Appointment

Advisor

Bio-inspired Solar Energy

Connect

Website

About

Fraser Armstrong’s interests are in biological redox chemistry and its application and inspiration for future technologies.

His group has developed a suite of methods called ‘Protein Film Electrochemistry’ that provide unique insight into complex electron-transfer reactions occurring in enzymes and other proteins. He has pioneered the idea that many enzymes behave as reversible electrocatalysts (a property that is otherwise almost exclusive to platinum metals) when attached to an electrode, introducing a new way of measuring enzyme efficiency in terms of ‘over-potential requirement’. These efforts are inspiring the design of optimal electrocatalysts, not least by demonstrating that almost-perfect catalysts do exist.  Comparisons between enzymes (reversible) and small-molecule electrocatalysts (generally irreversible) highlight the crucial role of the second and outer coordination shells and the formidable challenge confronting synthetic chemists. His research into the mechanisms of hydrogenases has led to important new insight into hydrogen activation, oxygen tolerance and cofactor assembly. Another instructive approach has been the design and testing of ‘demonstration toys’ in which enzymes operate as electrocatalysts in hybrid solar fuel cells and fuel cells.  Most recently, his group’s invention of the ‘electrochemical leaf’ has opened up a new route into exploiting enzyme catalysis for organic synthesis.

Awards

  • Bailar Medal of the University of Illinois, 2015
  • Swift Lectureship of the California Institute of Technology, 2014
  • Davy Medal of the Royal Society, 2012
  • Joseph Chatt Medal of the Royal Society of Chemistry, 2010
  • Elected Fellow of the Royal Society (FRS), 2008

Relevant Publications

  • Weller, Overton, Rourke, and Armstrong. Inorganic Chemistry. Oxford University Press, 7th edition (2018).

  • Siritanaratkul, B., C. F. Megarity, T. G. Roberts, T. O. M. Samuels, M. Winkler, J. H. Warner, T. Happe and F. A. Armstrong. “Transfer of Photosynthetic NADP+/NADPH Recycling Activity to a Porous Metal Oxide for Highly Specific, Electrochemically-driven Organic Synthesis.” Chemical Science 8, (2017): 4579 – 4586.

  • Evans, R.M., E. J. Brooke, S. A. M. Wehlin, E. Nomerotskaia, F. Sargent, S. B. Carr, S. E. V. Phillips and F. A Armstrong. “Mechanism of Hydrogen Activation by [NiFe]-hydrogenases.” Nature Chem. Biol. 12, (2016): 46-50.

  • Woolerton, T. W., S. Sheard, Y. S. Chaudhary and F. A. Armstrong. “Enzymes and bio-inspired Electrocatalysts in Solar Fuel Devices.” EnergyEnviron. Science 5, (2012): 7470 – 7490(2012).

  • Armstrong, F.A. and J. Hirst. “Reversibility and Efficiency in Electrocatalytic Energy Conversion and Lessons from Enzymes.” Proc. Natl. Acad. Sci. USA 108 (2011): 14049-14054.

Institution

Oxford University

Department

Department of Chemistry

Education

  • PhD, Graduate degrees and institutions: University of Leeds
  • BSc, University of Leeds, BSc (First Class Honours)

Country

United Kingdom

Support Us

CIFAR is a registered charitable organization supported by the governments of Canada, Alberta and Quebec, as well as foundations, individuals, corporations and Canadian and international partner organizations.

Donate Now
CIFAR header logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2023 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more