Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • News
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
    • Global Call for Ideas
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
  • Support Us
  • About
    • Our Story
    • CIFAR 40
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Staff Directory
    • Equity, Diversity & Inclusion
  • fr
  • Home
  • Bio

Follow Us

Léon Bottou

Léon Bottou

Appointment

Fellow

Learning in Machines & Brains

Connect

Website

About

The long-term goal of Léon Bottou’s research is to understand how to replicate human-level intelligence.

Because this goal requires conceptual advances that cannot be anticipated, Leon’s research has followed many practical and theoretical turns: neural networks applications in the late 1980s, stochastic gradient learning algorithms and statistical properties of learning systems in the early 1990s, computer vision applications with structured outputs in the late 1990s, theory of large scale learning in the 2000s. During the last few years, Léon Bottou’s research aims to clarify the relation between learning and reasoning, with more and more focus on the many aspects of causation (inference, invariance, reasoning, affordance, and intuition.)

Awards

  • Blavatnik Award for Young Scientists, 2007
  • NeurIPS Test of Time Award: “The Tradeoffs of Large-Scale Learning", 2018

Relevant Publications

  • Martin Arjovsky, S. C., & Bottou, L. (2017, August). Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia.

  • Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X., Chickering, D. M., Portugaly, E., … & Snelson, E. (2013). Counterfactual reasoning and learning systems: The example of computational advertising. The Journal of Machine Learning Research, 14(1), 3207-3260.

  • Bottou, L., & Bousquet, O. (2008). The tradeoffs of large scale learning. In Advances in neural information processing systems (pp. 161-168).

  • Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with online and active learning. Journal of Machine Learning Research, 6(Sep), 1579-1619.

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Institution

Facebook AI Research

New York University

Education

  • PhD (Computer Science) Université de Paris-Sud
  • Diplôme d’Ingénieur de l’École Polytechnique
  • the Magistère de Mathématiques Fondamentales et Appliquées d’Informatique from École Normale Superieure

Country

France

Support Us

CIFAR is a registered charitable organization supported by the governments of Canada, Alberta and Quebec, as well as foundations, individuals, corporations and Canadian and international partner organizations.

Donate Now
CIFAR header logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2023 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more