Equity, Diversity & Inclusion

CIFAR’s success is built on the combination of diverse perspectives. We acknowledge that there is more we can do to ensure that underrepresented groups, who experience systemic barriers in science, research organizations, and academia, are included in our organization and in our programs and initiatives.

In April 2020, CIFAR’s first ever Action Plan on Equity, Diversity, and Inclusion (EDI) was unanimously approved by our Board of Directors. In it, we articulate our commitment to practices that promote Equity, Diversity, and Inclusion.

We commit to:
• Championing EDI efforts throughout the organization, especially at the Board and senior leadership levels
• Creating ongoing opportunities for training and education in EDI topics
• Developing frameworks for recruitment at CIFAR informed by EDI principles
• Reporting on EDI efforts internally and externally
• Embedding EDI into our fellowship, application, and program review processes
• Supporting EDI within the broader research community

The Action Plan represents the culmination of a year of activity led by an internal working group and consultants. A thorough discovery, development, and research phase, including a confidential survey of CIFAR’s community, informed the final Action Plan.

Women have traditionally been underrepresented in CIFAR programs. The proportion of women profiled in this report does not reflect their representation in our community of fellows, scholars, advisors and donors. While we have chosen to overrepresent women in this report, we acknowledge that cultural diversity among those profiled is lacking. This aspect of diversity is reflective of our current community and is one of the equity, diversity, and inclusion issues we are working on as an organization.

CIFAR is located in the MaRS West Tower at 661 University Avenue in Toronto.

For thousands of years, this area has been the traditional territory of many nations including the Huron-Wendat, the Seneca, and most recently, the Mississaugas of the Credit. Today, this meeting place is still home to many Indigenous people from across Turtle Island and we are grateful to have the opportunity to work, learn, and share on this land.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MESSAGE FROM OUR CHAIR</td>
</tr>
<tr>
<td>3</td>
<td>MESSAGE FROM OUR PRESIDENT & CEO</td>
</tr>
<tr>
<td>4</td>
<td>A GLOBAL RESEARCH ORGANIZATION</td>
</tr>
<tr>
<td>6</td>
<td>Leading in a Pandemic</td>
</tr>
<tr>
<td>12</td>
<td>IDEAS DRIVING PROFOUND CHANGE</td>
</tr>
<tr>
<td>14</td>
<td>Groundbreaking Research</td>
</tr>
<tr>
<td>42</td>
<td>WHY I GIVE: LAURA ARRELL</td>
</tr>
<tr>
<td>44</td>
<td>ADVANCING CANADA’S LEADERSHIP IN AI</td>
</tr>
<tr>
<td>44</td>
<td>CIFAR Pan-Canadian AI Strategy</td>
</tr>
<tr>
<td>48</td>
<td>Leading Global Conversations about AI & Society</td>
</tr>
<tr>
<td>50</td>
<td>ACCELERATING DISCOVERY</td>
</tr>
<tr>
<td>51</td>
<td>Cultivating the Next Generation of Research Leaders</td>
</tr>
<tr>
<td>51</td>
<td>Enabling High-Risk, High-Reward ideas</td>
</tr>
<tr>
<td>54</td>
<td>CREATING SOCIETAL IMPACT</td>
</tr>
<tr>
<td>57</td>
<td>FUELLING SCIENTIFIC CURIOSITY</td>
</tr>
<tr>
<td>58</td>
<td>WHY I GIVE: PATRICIA BAIRD</td>
</tr>
<tr>
<td>60</td>
<td>CIFAR SUPPORTERS</td>
</tr>
<tr>
<td>65</td>
<td>APPENDICES</td>
</tr>
<tr>
<td>66</td>
<td>Financial Overview</td>
</tr>
<tr>
<td>69</td>
<td>Selected Research Citations</td>
</tr>
<tr>
<td>72</td>
<td>Board, Council, and Executive Fellows, Advisors, and CIFAR Azrieli Global Scholars</td>
</tr>
<tr>
<td>86</td>
<td>Canada CIFAR AI Chairs</td>
</tr>
<tr>
<td>88</td>
<td>Selected Awards & Honours Received</td>
</tr>
</tbody>
</table>
When I accepted the nomination to chair CIFAR’s Board of Directors, COVID-19 had not yet dominated research agendas, policy debates, and dinner table conversations.

I accepted the role because CIFAR is an essential part of the global research and innovation landscape, filling a unique niche that complements the work of universities, governments, and the private sector. CIFAR convenes extraordinary minds with the intellectual weight of the world’s top universities and the agility and ingenuity of a start-up. Our research community navigates complexity through interdisciplinary collaboration, inspiring new ideas and solutions. In my opinion, the world needs more CIFAR.

I could not have known how my conviction about CIFAR’s necessity would be proven by the COVID-19 pandemic, and I could not be more proud of how much CIFAR contributed to the world in this time of great need. From its home in Canada — with international reach — CIFAR brought together world-leading experts to stimulate important discussions and share best practices.

Faced with a crisis, CIFAR’s community of staff, donors, fellows, advisors, chairs, and CIFAR Azrieli Global Scholars sprang into action, convening important conversations and supporting much-needed research on the biology of COVID-19 as well as its political, technological, and social implications. Our global network of leading researchers came together to address critical questions of safety, efficacy, ethics, and responsibility, and CIFAR immediately delivered those insights to policy-makers. In addition, our President & CEO, Dr. Alan Bernstein, who built an international career leading key science organizations during crucial times, has quickly emerged as a trusted global leader in the COVID-19 pandemic, identifying knowledge gaps, influencing policy directions, and catalyzing new directions for research.

As we begin to look to our future beyond the pandemic, it is clear that the transformative advances needed to bring about a safe and prosperous future will come from networks of extraordinary minds who are unconstrained by geographic borders.

I am proud to lead this organization, as both a donor and the Board chair. Now, more than ever, I am convinced that our approach is essential, and I am delighted to have the opportunity, together with our exceptional Board of Directors, to guide CIFAR towards a truly remarkable fifth decade.

William L. Young
Chair, CIFAR Board of Directors
As I write this, the world is going through a period of tumultuous change. The topics that dominated the news in the last six months of 2019 — wildfires in Australia, climate change rallies, pipeline protests in Canada, and political turmoil in the U.K. — all now seem distant. Those memories have been replaced by unprecedented social and economic upheaval in virtually every country on the planet.

During the COVID-19 pandemic, science and our trust in its results have become the beachhead in our battle against the virus; PCR tests, neutralizing antibodies, and RNA vaccines have become part of everyday conversations.

The pandemic has thrust science onto centre stage, and researchers from across every discipline — epidemiologists, social scientists, ethicists, virologists, clinical trialists, and drug developers — are addressing the questions and providing the tools needed to shape our successful response to the COVID-19 pandemic.

At the outset of this pandemic, we had to decide how CIFAR would respond.

We reinforced ties within our community of fellows by continuing regular meetings of our global research programs, adapting to the new constraints of virtual gatherings, and providing opportunities to connect researchers keen for deep, stimulating discussions.

But that wasn’t enough. As we reflected on our strengths, it became clear that our convening power and global community of extraordinary minds could support high-impact research with immediate relevance to the pandemic.

Right away, we convened important, high-level discussions on artificial intelligence in the pandemic and provided counsel to the Office of the Chief Science Advisor of Canada on new technologies such as contact-tracing apps. We launched a series of virtual talks showcasing the extraordinary research of our fellows and funded collaborative projects addressing social and laboratory aspects of the pandemic.

Nearly one-quarter of our global community of over 400 fellows, CIFAR Azrieli Global Scholars advisors, and Canada CIFAR AI Chairs also pivoted their research to address COVID-19. For example, Eran Elinav, a fellow in our Humans & the Microbiome program from the Weizmann Institute in Israel, is developing a new PCR-based diagnostic test for the virus; Marzyeh Ghassemi, a Canada CIFAR AI Chair at the University of Toronto and the Vector Institute, is using artificial intelligence to detect early signs of COVID-19 in lung scans; Allison Harell, a fellow in our Boundaries, Membership & Belonging program and a professor at l’Université du Québec à Montréal, is analyzing levels of fear, personal social distancing behaviour, norms around social distancing, and satisfaction with governments’ handling of the pandemic.

The list goes on. CIFAR’s community of fellows is addressing these timely societal questions with the same intensity, excellence, and curiosity they use to address the long-term, complex questions that drive our research programs.

COVID-19 is shining a light on existing strengths and weaknesses in the fabric of our societies. Through all of this, one thing remains clear: CIFAR’s unique role as the global convenor of extraordinary minds addressing questions of importance to science and humanity is more important than ever.

Thank you for your interest and your support. As you read this year’s report, you will be struck by the impact of CIFAR’s global community. Their new ideas are driving profound change.

Dr. Alan Bernstein
OC, OOnt, PhD, FRSC/MSRC
President & CEO
A Global Research Organization

CIFAR convenes extraordinary minds to address the most important questions facing science and humanity.

By building long-term, interdisciplinary, global communities of collaboration, we provide the world’s top researchers with an unparalleled environment of trust, transparency, and knowledge sharing. Our time-tested model inspires new directions of inquiry, creating a culture of risk-taking, accelerating discovery, and yielding breakthroughs across borders and academic disciplines.

Through knowledge mobilization, we are catalysts for change in industry, government, and society.

In 2017, the Government of Canada appointed CIFAR to develop and lead the Pan-Canadian Artificial Intelligence (AI) Strategy, the world’s first national AI strategy.

CIFAR’s community of fellows, advisors, CIFAR Azrieli Global Scholars, and Canada CIFAR AI Chairs has included 20 Nobel laureates and now counts more than 400 researchers in 18 countries. We are supported by the governments of Canada, Alberta, British Columbia, Ontario, and Quebec, Canadian and international partners, as well as individuals, foundations and corporations.

CIFAR: WHAT’S IN A NAME?
[see-far]

As our organization has evolved over the last four decades, so has our name. Today, CIFAR symbolizes the global, interdisciplinary, and limitless nature of our focus.
There has never been a more important time for CIFAR’s approach to research.

CIFAR has been supporting top interdisciplinary researchers, marshalling knowledge, and influencing action in industry, government, and society for nearly 40 years.

Our model has led to numerous landmark advances, including in AI, quantum computing, the recognition of the importance of a child’s early years, and the socio-economic determinants of health.

Now, we are uniquely positioned to mobilize action and innovation to address the critical social, health, economic, environmental, and political challenges magnified by COVID-19.

Our model reinforces five interconnected pillars of excellence:

- **Pursuing high-risk, high-reward questions** with the potential to drive profound change through our global research programs.
- **Accelerating discovery** through next generation initiatives and Catalyst Funds.
- **Strengthening Canada’s leadership in disruptive new technologies**, including AI, through the Pan-Canadian AI Strategy, and quantum computing.
- **Creating societal impact** through our Knowledge Mobilization program.
- **Stimulating scientific curiosity** through our public engagement program.

The CIFAR Model

- Global, interdisciplinary research networks
- Open Inquiry
- Sustained long-term commitment
- Environment that fosters risk taking, trust and collaboration

MOST IMPORTANT QUESTIONS FACING SCIENCE AND HUMANITY

Open Inquiry

Sustained long-term commitment

Environment that fosters risk taking, trust and collaboration

Global, interdisciplinary research networks

Open Inquiry

Sustained long-term commitment

Environment that fosters risk taking, trust and collaboration
CIFAR took immediate action during the COVID-19 pandemic, leveraging our experience as a global convenor of multilateral discussions to address the most urgent questions facing science, society, and governments.
We allocated two rounds of high-impact rapid-response funds, supporting new research collaborations that address COVID-19.

Our COVID-19 Action Fund was launched to support responsive, meaningful actions and collaboration during the pandemic.

The Action Fund was supported by individuals, partners, foundations, and corporations, raising $325,000 by the end of the fiscal year. All donations to the Action Fund support initiatives such as our high-impact rapid-response grant programs that spur innovation and research collaborations.

Shortly after COVID-19 was declared a pandemic by the World Health Organization, we issued a call for innovative, high-risk, high-reward proposals that use AI to address the pandemic.

Fourteen research projects were selected. Among them were efforts to repurpose existing drugs, research to identify at-risk populations, and social media analyses to understand the mental health implications of the pandemic. CIFAR’s AI & COVID-19 Catalyst Grants Program was supported in part by the Government of Ontario, Microsoft through the AI for Health (AI4H) program, the Max Bell Foundation, the Natural Sciences and Engineering Research Council of Canada (NSERC), and Genome Canada.

Building on our long-standing partnership, CIFAR and Manulife launched a new program to provide seed funding for projects to address the impact of the pandemic on society.

Projects funded through the Manulife CIFAR Population Health & Well-being Grant Program explore the myriad effects of social distancing and the lifelong impact of the crisis on health and development. Outcomes of projects may immediately affect community-based screening tools, wearable technologies, and the use of robots in healthcare or with the elderly. They will also have longer-term implications for policy and governance.

A History of Impact in Population Health
The partnership between Manulife and CIFAR began in 1987, coinciding with Manulife’s 100th anniversary. Since then, Manulife has been a committed partner, supporting pioneering research in health and social sciences that has informed the development of policies and practices to improve the health, well-being, and resilience of communities across Canada.

SPOTLIGHT: Three CIFAR AI and COVID-19 Catalyst Grant projects use AI to address the pandemic

Using AI to look through the existing medicine cabinet of approved drugs
A team including Canada CIFAR AI Chairs Jian Tang (HEC Montreal/Mila), William Hamilton (McGill University/Mila), and Yoshua Bengio (Université de Montréal/Mila) is using machine learning to find drugs that affect the same proteins targeted by COVID-19. Their approach is similar to the way social networks recommend friends. “In social networks, for example, you want to recommend friends based on existing links,” says Tang. “In this case, it’s the same intuition. Based on the existing links between the drugs and proteins and the proteins and disease, we try to predict those new links.”

Another approach, championed by a Toronto team led by CIFAR Azrieli Global Scholar Jean-Philippe Julien (University of Toronto, The Hospital for Sick Children) and Costin Antonescu (Ryerson University) is testing AI-identified drug candidates in cellular assays. With labs already set up to investigate the interactions between drugs, cells, and viruses, Julien and Antonescu are turning their attention towards SARS-CoV-2.

Who is most at risk from COVID-19?
Data can tell us.
An Alberta team including data scientist Randy Goebel (University of Alberta/Amii) and Canada CIFAR AI Chair Martha White (University of Alberta/Amii) believe that, by analyzing large amounts of comprehensive health data that includes COVID-19 status, they will be able to tease out subtle connections and identify vulnerable segments of the community.

With the help of medical doctors, sociologists, and ethicists at the University of Alberta and Alberta Health Services, Goebel and White are working to gain simple, uniform, and secure access to health data from across the province, apply machine learning models, and communicate their findings to the public.

Analyzing tweets to check in on the world’s mental health
Faced with hurdles such as home schooling, unemployment, and social distancing from friends, colleagues and families, many people around the world have experienced new and worsening mental health issues.

Alona Fyshe, a fellow in CIFAR’s Learning in Machines & Brains program and Canada CIFAR AI Chair based at the University of Alberta, is working with a team of computer scientists to apply AI techniques to social media to better understand these challenges and what impact they have on our mental health.
A GLOBAL RESEARCH ORGANIZATION

CONNECTING GLOBAL EXPERT COMMUNITIES & MOBILIZING KNOWLEDGE

In the first few months of the pandemic, we quickly connected scientists and organizations for discussions and advice on AI, data, ethics, contact-tracing apps, and changing social dynamics.

Our roundtable on AI and COVID-19 brought together international experts and resulted in a comprehensive report for policy-makers.

Led by CIFAR, a group of 70 Canadian and international leaders in AI, business, infectious disease, epidemiology, and medicine explored opportunities for collaboration and data sharing. Within 12 hours, we published a comprehensive report on the policy-relevant insights that emerged from the expert roundtable. This report was used at a virtual policy briefing of more than 50 policy-makers and health officials from federal and provincial governments across Canada, the U.S., and the U.K.

We laid the groundwork for collaborations and sparked new ideas for interdisciplinary inquiry around COVID-19.

Our Call to Action on Machine Learning & COVID-19 for fellows, CIFAR Azrieli Global Scholars, and advisors in our Learning in Machines & Brains program resulted in several collaborations across the program and led to the first joint CIFAR–European Laboratory for Learning and Intelligent Systems (ELLIS) meeting on contact tracing.

A Pandemics & Expanded Personal Space workshop that brought together fellows from seven research programs defined critical questions and opportunities caused by the sudden shift in social interaction.

We created a clear reference for governments on the implications of deploying novel technologies in response to COVID-19.

At the request of the Chief Science Advisor of Canada, Dr. Mona Nemer, we established an expert advisory group of senior scholars to advise on the technical, social, legal, and ethical considerations for deploying novel technologies in response to COVID-19, with a particular focus on contact-tracing apps. This independent group, chaired by the Vice-Chair of CIFAR’s Board of Directors and former deputy Prime Minister Anne McLellan, included leading Canadian experts in law, regulatory innovation, AI, epidemiology, clinical care, philosophy, ethics, and public policy. Their recommendations included a framework of guiding principles and specific implementation advice for government.

GROUNDBREAKING RESEARCH

Nearly one-quarter of our global community of over 400 fellows, advisors, Canada CIFAR AI Chairs and CIFAR Azrieli Global Scholars have focused their research to address the challenges of COVID-19.

Their projects span six broad thematic areas:

- COVID-19 Response Leadership
- Biology of SARS-CoV-2
- Epidemiology & Transmission
- Medical Countermeasures
- Social & Economic Impact
- Mental Health & Well-being

GLOBAL REACH

We highlighted the research insights and work of our global community by launching a series of free, virtual public talks held every other week entitled “Science Is the Exit Strategy.”

The talks covered community approaches to COVID-19 screening, what past pandemics can teach us about today’s pandemic, and combining X-ray diagnostics with AI to predict COVID-19 severity, among other important topics.

In the first four months of the pandemic, our community of researchers and members of our executive team were featured in more than 8,300 news stories worldwide.

MARCH 11
The World Health Organization declares COVID-19 a global pandemic

MARCH 15
CIFAR begins working remotely and pivots to virtual meetings and engagements

MARCH 17
The Government of Ontario enacts a Declaration of Emergency

MARCH 20
CIFAR Learning in Machines & Brains Program Call to Action: Machine Learning & COVID-19

MARCH 23
CIFAR International Roundtable on AI & COVID-19

MARCH 23
AI & COVID-19 Catalyst Grants call for proposals launched

MARCH 24
AI & COVID-19 Virtual Policy Briefing

APRIL 2
Worldwide cases reach 1,000,000

APRIL 6
COVID-19 Action Fund launched

APRIL 11
Science Is the Exit Strategy: CIFAR Virtual Talks launched

APRIL 21
Society, Technology & Ethics in a Pandemic (STEP) Expert Advisory Group first meeting

APRIL 21
AI & COVID-19 Catalyst Report published

APRIL 21
AI & COVID-19 Catalyst Grant projects announced

APRIL 23
AI & COVID-19 Catalyst Grant projects announced

APRIL 26
Pandemics & Expanded Personal Space workshop

APRIL 30
STEP Expert Advisory Report published

APRIL 30
Science Is the Exit Strategy: CIFAR Virtual Talks launched

MAY 12
The official global death toll passes 300,000

MAY 15
The Government of Canada announced plans for a nationwide COVID-19 contact tracing app

MAY 15
Pandemics & Expanded Personal Space workshop

MAY 16
Manulife CIFAR Population Health & Well-being Grant Program launched

MAY 20
CIFAR International Roundtable on AI & COVID-19

MAY 22
CIFAR Learning in Machines & Brains Program Call to Action: Machine Learning & COVID-19

MAY 25
AI & COVID-19 Catalyst Grants call for proposals launched

MAY 26
Manulife CIFAR Population Health & Well-being Grant Program launched

JUNE 16
Pandemics & Expanded Personal Space workshop
When most of us think of world-changing outcomes from science and research, we often do not consider the decades of work that led up to the discoveries that make headlines.

Time allows researchers to challenge paradigms and explore high-risk ideas for high-reward outcomes, and that’s why time is a central ingredient in CIFAR’s unique approach to advancing knowledge.

Through our research programs, we provide an environment of open inquiry and the time our fellows, advisors, and CIFAR Azrieli Global Scholars need to take risks, explore radical new ideas, and bring concepts into reality.

We actively engage industry, academia, and governments to identify areas of opportunity for high-impact solutions. We create custom knowledge mobilization plans for each of CIFAR’s research programs, taking into consideration emerging needs and trends in each of the sectors we serve.
David Poulin (Université de Sherbrooke), the late co-director of our Quantum Information Science program, embodied the bold, collaborative spirit of CIFAR’s model.

Our portfolio of research programs spans four broad themes:

LIFE & HEALTH

INDIVIDUALS & SOCIETY

EARTH & SPACE

INFORMATION & MATTER

We concentrate on bold questions and futuristic ideas, so that the impact of our work reverberates through entire fields of study and sectors of society. From AI and quantum computing to full-day kindergarten and the social determinants of health, tracing the roots of many important contributions to global science leads through CIFAR.

This report highlights key collaborations and milestones that took place during 2019-2020.
GROUNDBREAKING RESEARCH

GLOBAL COMMUNITIES

72 Advisors
263 Fellows
428 researchers*
161 institutions
26 CIFAR Azrieli Global Scholars
18 countries
80 Canada CIFAR AI Chairs
3,000+ researchers, policy-makers, and industry leaders came together for 94 meetings and events, totalling 116 days of meetings in 2019–2020.

STAYING CONNECTED

34 program meetings and cross-programmatic events in 2019–2020
Of which 18 were held virtually from March 2020 to June 2020.

EXTRAORDINARY MINDS

105 major awards received by fellows, advisors, CIFAR Azrieli Global Scholars, and Canada CIFAR AI Chairs
Including the 2019 Körber European Science Prize, the 2019 Social Sciences and Humanities Research Council Gold Medal, and two Sloan Fellowships.
Manitoba-born James Peebles, Albert Einstein Professor Emeritus of Science at Princeton University, was awarded the 2019 Nobel Prize in Physics “for contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos.” He was a founding member of CIFAR’s Cosmology & Gravity program in 1985, in which he remained actively engaged for more than 25 years.

CIFAR’S 20TH NOBEL CONNECTION

256 fellows, advisors, CIFAR Azrieli Global Scholars, and Canada CIFAR AI Chairs (60%) contributed to the top 1% of most-cited papers worldwide from 2013 to 2017.****

93.1% of researchers report that participation in CIFAR activities has positively informed or impacted their research (e.g. influence on their research directions, new ideas, etc.)

1611 publications influenced by CIFAR activities**

437 publications authored by two or more CIFAR researchers***

HIGH-IMPACT SCHOLARSHIP

A HUB FOR COLLABORATION

60 formal partnerships with governments, research organizations, industry, and foundations

TOP 1%

2019 / 2020

CIFAR Impact Report

* Includes researchers in all CIFAR programs, including Institutions, Organizations & Growth, Successful Societies, and Genomic Networks, since they continued to hold CIFAR-supported meetings as part of their transition to alumni. 13 Canada CIFAR AI Chairs are also appointed as fellows or advisors in CIFAR research programs.

** Self-reported number of peer-reviewed journal articles & conference papers, books and book chapters, and publicly released working papers, white papers, or policy reports influenced by participation in CIFAR programs. (Source: Program Member Annual Reports, 2020, n=202 researchers.) Excludes researchers in sunsetting programs because they were not required to fill in the Annual Survey.

*** Self-reported number of publications co-authored with other CIFAR researchers. (Source: Program Member Annual Reports, 2020, n=202 researchers.) Excludes researchers in sunsetting programs because they were not required to fill in the Annual Survey.

**** Percentage of CIFAR researchers contributing to the top 1% of most-cited papers at the world level from 2013 to 2017. Statistics produced by Science-Metrix using data from Scopus (Elsevier).
The unknown diversity of crop myco-biomes: Fungicide resistance in wheat endophytic fungi, includes fellows Christina Cuomo (Broad Institute, Harvard/MIT), Matthew Fisher (Imperial College London), Sarah Gurr (University of Exeter), James Kronstad (University of British Columbia), and Eva Stukenbrock (Christian-Albrechts University of Kiel and the Max Planck Institute for Evolutionary Biology).

As antibiotic producers and deadly pathogens, necessary members of ecosystems and invasive species, fungi are complex, and understanding their kingdom demands a multidisciplinary approach. CIFAR’s Fungal Kingdom program includes diverse scientists who interrogate the unique facets of fungal biology in order to mitigate the threats posed by fungi and harness their extraordinary potential.

Collaboration, goal-setting, and a “first” for CIFAR.

Fellows and advisors met for the first time as a program in Toronto in November 2019 and outlined their ambitious research agenda. In a first for a CIFAR program, the meeting report was published in the peer-reviewed journal *Genes, Genomes, Genetics* in June 2020.¹

A joint research initiative introduced the program as a unified group to the wider research community. All 19 fellows and advisors in the program co-authored a review article in the May 2020 issue of the journal *mBio* on the threats posed by the fungal kingdom.²

Three Catalyst Fund projects accelerated additional collaborations within the program. One project, which includes five fellows*, examines the evolution of fungicide resistance in fungi that infect wheat and could inform future crop protection strategies.

Inspired by issues arising out of the COVID-19 pandemic, the program will engage diagnostic companies as part of their knowledge mobilization plan. Fellows and advisors in the program will engage diagnostics companies and public health organizations on the early detection of emerging fungal pathogens that could cause future pandemics.

“*What I value most about our CIFAR program is the opportunity for wider impacts of our scientific work—new ideas, collaborations, and big-picture thinking.*”

CHRISTINA CUOMO
CIFAR Fellow, Broad Institute, Harvard/MIT
For Eva Stukenbrock, fungi are fascinating, fickle creatures. They can be essential, useful, or deadly. This varied nature is the focus of the Fungal Kingdom: Threats & Opportunities program.

Most plants live alongside a large diversity of fungi, and only relatively rarely does a fungus turn to the dark side. What makes a species of fungus switch from good or neutral to bad? This question captivates Danish-born Stukenbrock, a fellow in CIFAR’s Fungal Kingdom program who leads a lab at Christian-Albrechts University of Kiel and the Max Planck Institute for Evolutionary Biology. She is focused on understanding this dark side of fungi, specifically how fungal pathogens like \textit{Zymoseptoria tritici} evolve and spread.

Together with experts on fungi that infect plants, wildlife, and humans, each bringing their unique perspective to the program, Stukenbrock is excited about the group’s ability to understand and combat diseases that affect human health, the environment, and the food chain. “I see a lot of potential for scientific exchange between these different systems,” Stukenbrock says. “This is a fantastic initiative to get a small group of scientists together to really talk about science.”
FOUNDED

2014

PROGRAM DIRECTORS

<table>
<thead>
<tr>
<th>Program Directors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brett Finlay</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>Melissa Melby</td>
<td>University of Delaware</td>
</tr>
</tbody>
</table>

FELLOWS

13

CIFAR AZRIELI GLOBAL SCHOLARS

<table>
<thead>
<tr>
<th>Scholars</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

ADVISORS

<table>
<thead>
<tr>
<th>Advisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

MEETINGS IN 2019-2020

- November 2019: Toronto, ON, Canada
- April, May, June 2020: Virtual

RESEARCH PARTNERS

- Brain Canada Foundation through the Canada Brain Research Fund, Fonds de recherche du Québec - Santé (FRQS), Genome British Columbia, Genome Canada

SUPPORTERS

- Canada Life, Anonymous donor

There is increasing evidence that the bacteria, viruses and fungi that inhabit our body — collectively called the human microbiome — have a tremendous impact on human health. This program brings anthropologists, biologists, and other scholars together to ask questions about the microbiome’s impact on human health and development, and how it is affected by individual and societal behaviour.

Renewed for a second five-year term, and with new leadership, the program will continue to think holistically about the microbiome at the community level.

Moving forward, fellows, advisors, and CIFAR Azrieli Global Scholars in the program will focus on how climate change and COVID-19 might affect the microbiome, as well as the role of the microbiome in early and later life. Melissa Melby (University of Delaware) became co-director with Brett Finlay (University of British Columbia), and Janet Rossant (University of Toronto, The Hospital for Sick Children) moved to the program’s Advisory Committee.

An article in the journal *Science*, co-authored by eight CIFAR fellows and advisors, suggested obesity, heart disease, and diabetes may be communicable through the microbiome. The article flowed out of interdisciplinary discussions at the March 2019 program meeting in Victoria, B.C., and gave an entirely new perspective on these common diseases.

A Focus Issue of the journal *BioEssays* featured the diverse research within the program. With contributions from many fellows, advisors, and CIFAR Azrieli Global Scholars in the program, the essays covered a wide range of interdisciplinary subjects related to the human microbiome. This included an argument for including the microbiome when studying the human nervous system and a review of host–microbiome interactions across the animal kingdom.

The program advanced their knowledge mobilization plan to integrate microbiome knowledge into public health curricula.

In the fifth workshop between the program and senior leaders at Canadian and U.S. schools of public health, a working group was established to conduct a landscape analysis of current curricula and, in partnership with public health schools, develop curriculum modules for pilot testing.

“CIFAR plays a critical role by providing the infrastructure and resources to catalyze [international interactions]. CIFAR is also very attuned to current events and global priorities, and is able to rapidly pivot and respond to emerging needs such as the COVID-19 crisis.”

MEGHAN AZAD
CIFAR Fellow, University of Manitoba
FINDING HUMANITY’S PLACE IN THE WEB OF LIFE

The history of medicine and biology can be understood as a history of humans coming to terms with the fact that we do not exist in isolation. The fundamental premise underlying the Humans & the Microbiome program is that our health depends not just on what we consume and cultivate, but also on our interactions with the microbes — bacterial, viral, and fungal — that surround us, outnumbering human cells in our own bodies.

Investigating the physical processes of infection, immunity, mutualism, and symbiosis is imperative, but without understanding the social and historical dimensions of why those interactions take place, we would be lost. And that’s what captivates Tamara Giles-Vernick, a fellow of CIFAR’s Humans & the Microbiome program and professor at France’s Institut Pasteur.

While her methods may be unconventional for the biologists and physicians with whom she often collaborates, they provide the key to understanding the broader picture of disease. In the same way that a doctor might ask for a medical history to diagnose an ailment, Giles-Vernick determines the cultural and anthropological roots of a disease.

Giles-Vernick says she is naturally inclined to look at the bigger picture, and her involvement with CIFAR has helped her frame disease in an even wider context. “The Humans & the Microbiome program has been instrumental in making me step back a bit,” she says. “We should be thinking about a ‘web of life,’ and what it is that people, and all of these other living beings, share.”
INDIVIDUALS & SOCIETY

THE AZRIELI PROGRAM IN BRAIN, MIND & CONSCIOUSNESS

The quality of our consciousness is what sets us apart from other species, and is one of the defining traits of being human. Yet the nature of consciousness remains a mystery. The Azrieli Program in Brain, Mind & Consciousness program brings together neuroscientists, philosophers, and psychologists to grapple with the fundamental underpinnings of consciousness, relating the findings to biology on the one hand and to philosophical questions on the other.

Renewed for a second five-year term, the program will move away from broad exploratory themes and towards specific applications of consciousness.

Anil Seth (University of Sussex), a fellow since 2016, became co-director alongside Koerner Fellow Adrian Owen (Western University) as the program began to explore core questions about the neural and cognitive mechanisms of human consciousness, with new emphasis on education, aesthetics, art, and emerging technology and policy, and a particular focus on AI and virtual reality.

“Islands of Awareness”: fellows examined whether brain tissue without any sensory connection could support consciousness.

Building on conversations at CIFAR meetings, Tim Bayne (Monash University), Marcello Massimini (University of Milan), and Anil Seth (University of Sussex) proposed “islands of awareness” in a provocative paper on the cover of *Trends in Neurosciences*. Their paper spurred debate in the community, with published commentary and rebuttals.

Fellows, advisors, and CIFAR Azrieli Global Scholars continued working with experts in the Extended Reality (XR) industry.

Through their knowledge mobilization plan, a community from Canada, the U.S., and the U.K. is collaborating on making virtual and augmented reality technologies more immersive by deepening our understanding of the brain and mind.

“The multidisciplinary interactions CIFAR enables and the discussions between scientists in small groups at our meetings leave me inspired and full of ideas to pursue. There is no other group like it in my experience. It has made a big difference to my research directions.”

LAUREL TRAINOR
CIFAR Fellow, McMaster University
Anil Seth, the co-director of The Azrieli Program in Brain, Mind and Consciousness and director of the Sackler Centre for Consciousness Science at the University of Sussex, loves difficult questions. Why am I who I am? Why is it like anything to be me? How am I conscious? What does it mean to be a self in the world?

To some, these questions may seem impossible to answer, but Seth revels in the mystery. He uses every tool at his disposal, from classic psychology experiments and neuroimaging to artificial intelligence and virtual reality, to answer fundamental questions about the nature of human experience.

Joined by a team of neuroscientists, philosophers, psychologists, biologists, and computer scientists in The Azrieli Program in Brain, Mind and Consciousness, Seth is at the centre of a burgeoning field concerned with solving the mystery of consciousness.

The team is driven to gain a deeper understanding of the way we experience the world in part because it could lead to better treatments for conditions like depression, anxiety, psychosis, chronic fatigue, and dementia. “These conditions manifest themselves through alterations in conscious experience,” says Seth. “So if we can understand how the brain generates and shapes consciousness, this gives us new windows into understanding and treating a whole variety of conditions that affect and afflict our everyday lives.”
All societies distinguish members from non-members. The Boundaries, Membership & Belonging program explores ways to create and empower groups without reinforcing ideas that produce harmful divisions and hierarchies. The program brings together leading social scientists and political and legal theorists who collaborate to make sense of membership politics.

First opportunities for collaboration and planning.
Fellows and advisors met for the first time as a program in September 2019 to plan the trajectory of the next five years. Virtual meetings that propelled their research agenda forward were held in March, May, and June 2020.

Cross-disciplinary work by fellows and an advisor in the program examined solidarity and national identity.
Drawing on public policy, political psychology, and moral philosophy, Advisor Keith Banting (Queen’s University), Fellows Allison Harell (Université du Québec à Montréal) and Will Kymlicka (Queen’s University), and collaborator Rebecca Wallace (Ryerson University) published a chapter in *Liberal Nationalism and Its Critics: Normative and Empirical Questions*. The chapter examines the Canadian public’s belief in the deservingness of minority groups for social support as a function of the groups’ perceived commitment to Canada.

New collaborations developed within the program through Catalyst Fund projects.
One project is tracing the characteristics of nationalist discourse since 1945 through computational analysis of media data. Another is using an online survey to examine Canadian attitudes to immigrant “others.”

“Being part of a CIFAR program is career-changing. The emphasis on asking big and risky questions in an interdisciplinary and collaborative atmosphere with leading scholars from around the world is unparalleled. Every time I speak with other program members, I have new ideas for projects to explore, new collaborators to do it with, and I know the financial support would be there to get these projects off the ground.”

ALLISON HARELL
CIFAR Fellow, Université du Québec à Montréal
No two people are exactly alike.

The process of deciding which differences are valuable and which are unacceptable, of drawing boundaries between who is “in” and who is “out,” is what fascinates fellows in the Boundaries, Membership & Belonging program. The process has also shaped, and will continue to shape, the political and cultural world we inhabit.

Yasmeen Abu-Laban, a fellow in the program, Canada Research Chair in the Politics of Citizenship and Human Rights, and professor of political science at the University of Alberta, is particularly interested in citizenship, and how governments and people respond to diverse others in a world where migration is on the increase.

Her work takes her across Canada and around the world, interviewing community groups, policymakers, and members of different communities to discover how people who come from varying backgrounds live together, and what the impacts of policies like knowledge tests and language requirements are on citizenship.

The CIFAR program enables Abu-Laban to collaborate with historians, philosophers, sociologists, economists, psychologists, and other political scientists to understand whether it’s possible to build an inclusive future. “I think the way CIFAR brings people together and supports research advances over many years is distinct,” she says. “It is generative. And it’s conducive to new kinds of breakthroughs.”
The Child & Brain Development program examines the effect of the early environment on children, and how adversity can have lifelong impacts on health and development. Over the past decade, fellows, advisors, and CIFAR Azrieli Global Scholars in the program, including biologists, psychologists, and medical doctors, have generated important findings related to the biological effects of our early experiences as children and transformed our understanding of the interplay between nature and nurture.

Fellows in the program established a clear relationship between the strength of social bonds and health across species.

Daniel Belsky (Columbia University) and Jenny Tung (Duke University), along with colleagues, extended the idea of the social determinants of health into other species in the journal Science. A crucial reference publication was created.

In a special issue of PNAS (Proceedings of the National Academy of Sciences), fellows and advisors in the program* reported on original CIFAR-supported research about the timing of brain development, published a primer on what is currently known about epigenetics and the biological embedding of experience, and laid out conceptual models for studying timescales in child development. The volume is a model for the impact of interdisciplinary research and the articles, individually and collectively, are a crucial reference for child development research.

Fellow Thom McDade (Northwestern University) found a way to collect cell cultures in the field.

The laboratory infrastructure required for cell culture has limited research in community-based settings, which in turn limits scientific understanding of phenomena in places far from labs. McDade is addressing this gap with two “field friendly” cell culture protocols that will give his colleagues in the CIFAR program a versatile tool to understand the full biological effects of early life experiences.

A partnership with the International Research Center for Neurointelligence (IRCN) at the University of Tokyo led to new collaborations.

Led by Takao Hensch (Harvard University, University of Tokyo), the IRCN is one of 13 elite World Premier International Research Centers established by the Government of Japan. IRCN hosted the program’s November 2019 meeting in Tokyo as the first activity under the new memorandum of understanding with CIFAR.

*Elisabeth Binder (Max Planck Institute of Psychiatry), W. Thomas Boyce (University of California, San Francisco), Ami Citri (The Hebrew University of Jerusalem), David Forrest Clayton (Queen Mary University of London), Brian Dias (University of Southern California), Paul Frankland (University of Toronto), Anna Goldenberg (University of Toronto/Vector Institute), Takao Hensch (Harvard University/University of Tokyo), Daniela Kaufer (University of California, Berkeley), Michael Kobor (University of British Columbia), Bryan Kolb (University of Lethbridge), Joel Levine (University of Toronto), Thomas McCade (Northwestern University), Michael Meaney (McGill University), Sara Mostafavi (University of British Columbia/Vector Institute), Charles Nelson (Harvard University), Candice Odgers (University of California, Irvine), Nadine Provencal (Simon Fraser University), Kieran O’Donnell (McGill University), Gene Robinson (University of Illinois at Urbana-Champaign), Marla Sokolowski (University of Toronto), Jenny Tung (Duke University)

“CIFAR encourages exactly the type of interdisciplinary dialogue that I find most exciting in science — and, equally as importantly, provides flexible funding support to turn those conversations into tangible research outcomes.”

JENNY TUNG
CIFAR Fellow, Duke University
As the first member of her family to graduate from high school, Candice Odgers understands the barriers to education and social mobility that youth can face. Now the co-director of CIFAR’s Child & Brain Development program and a professor of psychology at the University of California, Irvine, she studies those barriers and hopes to find ways to help youth overcome them.

She and other CIFAR fellows in the program have found that family income, postal code, life experiences, and genetic code can all interact in complex ways to make it difficult for people to move up the social ladder.

For psychologists like Odgers, the ubiquity of technologies like smartphones and social media are an incredible opportunity to build a world where therapy and support are always a tap away. But Odgers worries that instead of seeing opportunities, most people are succumbing to fears. “There is a huge disconnect between the narrative that is being portrayed in the media and among adults, and what we were seeing in any data that have been collected by us or other people,” she says. “People are so busy focusing on phones and fears, we are missing the real opportunities to support kids’ mental health.”
INNOVATION, EQUITY & THE FUTURE OF PROSPERITY

Innovation that exacerbates inequality can undermine public support for science and innovation and can contribute to broader political alienation. CIFAR’s Innovation, Equity & the Future of Prosperity program brings together economists, political scientists, engineers, and historians to examine how the policies used to generate and diffuse innovation affect the distribution of opportunities and outcomes in society.

A program research agenda was established.

The program’s first meetings set the research agenda for the next five years and examined how technologies interact with local economies and societies.

In the first international survey of its type, fellows examined the impact of automation on automobile industries in the U.S. and Italy.

Building on discussions at program meetings, Aldo Geuna (Collegio Carlo Alberto, University of Torino) and Susan Helper (Case Western Reserve University) analyzed the organizational and employment impact of robots, AI, sensors, and other technologies associated with Industry 4.0.

A collaboration among fellows provided a basis for studying how innovation policy affects people with disabilities.

Dan Breznitz (University of Toronto) and Amos Zehavi (Tel Aviv University) examined the development and implementation of technologies that assist people with disabilities. They found that policy across the four countries they studied (Canada, Israel, Sweden, United States) is broadly similar, that differences cannot be explained by traditional left/right politics, and that support for development of assistive technology does not correlate with support for the adoption of that technology.

A new project was launched to understand the role robots can play in long-term care homes affected by the pandemic.

Goldie Nejat (University of Toronto) and Amos Zehavi (Tel Aviv University) are studying how the introduction of new technologies into the long-term care settings could enable physical and emotional care for residents while maintaining physical distance.

The program identified opportunities to advise industrial and government leaders on the equity effects of new technology and innovation policies.

A new CIFAR-led international industry advisory committee will bring program members together with a range of experts to mobilize new knowledge emerging from research.

“At a time when the world is facing problems that can only be solved by creative, cross-disciplinary thinking and cooperation, CIFAR is one of a handful of organizations making the investment in the intellectual resources needed to address these problems.”

KENNETH LIPARTITO, CIFAR Fellow, Florida International University
Ray Gosine is a fellow in CIFAR’s Innovation, Equity & the Future of Prosperity program and an engineer who has spent a career designing robots, drones, and pattern recognition systems to make natural resource industries like mining safer and more efficient. His robots keep workers out of hazardous conditions and allow them to do more with less.

But when a robot, or any new technology, is introduced into a system, it has a ripple effect. When one person is able to remotely control a machine that used to take four operators, what happens to the other three workers? These are the types of questions being addressed by the program.

Gosine, who also serves as Associate Vice President (Research) at Memorial University of Newfoundland, is excited about what a small group of committed, intelligent scholars spanning the disciplines of history, engineering, and the social sciences can do to understand the societal impact of innovation. “I think it’s an incredibly enriching network,” he says. “[CIFAR] brings people together with different backgrounds, and provides the forum and encouragement to engage, to be able to do something very unique that otherwise would not happen.”
Beneath our feet is a vast, unexplored world consisting of up to tens of kilometres of thick crust containing water, gases, nutrients, resources, and various forms of life. CIFAR’s Earth 4D program draws on geology, chemistry, planetary science, and engineering to investigate the interactions between the subsurface and the surface on Earth. The program is expanding our understanding of planetary evolution and the possibility of finding life elsewhere.

First opportunity for collaboration.

Fellows and advisors met for the first time in November 2019 to plan the trajectory of the next five years. Three ideas for collaborations sparked at that meeting led to Catalyst Fund projects in the spring of 2020.

Multiple fellows working across disciplines collaborated on their second influential review paper.

The first, published last year in the prestigious journal *Nature Astronomy*, argued that the best place to look for life on Mars is under the surface. The second, in *Environmental Science and Technology*, reviewed state-of-the-art techniques in identifying leaks and contaminants from fracking operations.

Through their knowledge mobilization plan, the program began engaging the international space exploration community to further the search for water (and potentially life) on Mars.

Working with the International Space Science Institute, fellows will meet with space agencies and the aerospace industry to discuss the tools and missions that would be required to look for signs of life under the surface of other planets.

“CIFAR is an example of truly interdisciplinary research, bringing the abilities of a wide cross-section of scientists together, and providing the spark from which we hope new insights into our world will flare.”

NIGEL SMITH
CIFAR Fellow, Laurentian University & SNOLAB
Barbara Sherwood Lollar, the co-director of CIFAR’s Earth 4D: Subsurface Science and Exploration program and University Professor of Earth Sciences at the University of Toronto, has devoted her career to understanding how water interacts with planets and life over time.

The recipient of many major awards in Canada and abroad, including the Order of Canada, the NSERC Herzberg Gold Medal, the Killam Prize in Natural Sciences, and fellowship in the Royal Society, Sherwood Lollar is a recognized leader and science communicator. “You can’t be a good scientist without being a people person,” she says. “Science is a very people-oriented occupation, partly because of the focus on teamwork and on communication.”

She brings her collaborative approach to the program, which launched in July 2019 and has already taken its research in exciting new directions.

“There was no sitting around waiting until our first meeting,” Sherwood Lollar says. “Some of [the fellows] had already started thinking about papers they could write. So when we came to the first meeting, already out of the starting gate, they were presenting papers, abstracts, and ideas. It was extraordinarily fun, because it allowed us to then put some plans around those ideas and develop them more fully.”
For most of human history, our only information about the universe came from visible light. Later we learned to detect other forms of electromagnetic radiation like infrared and radio waves. Now we can finally detect gravitational waves, and that opens the door to fundamentally new ways of observing and understanding the universe. Astronomers, cosmologists, physicists, and computer scientists in CIFAR’s Gravity & the Extreme Universe program ask questions about the nature of extreme gravity, the origin and evolution of the universe, and the structure of compact objects such as black holes and neutron stars, as well as profound questions about fundamental physics and astrophysics.

A series of rapid discoveries highlighted the unique power of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope.

In August 2019, the CHIME team* announced the discovery of eight repeating fast radio bursts (FRBs). In January 2020, they reported that a periodic pattern of bursts was discovered from one of those sources. In May 2020, a highly magnetized young neutron star known as a magnetar was found to produce the right kind of radio burst to strongly support the idea that magnetars are the origin of at least some FRBs.

An important discovery of how black holes could be formed reinforced the strength of the program’s “multimessenger” approach to astronomy.

Fellow Vasikili Kalogera (Northwestern University) used data from gravitational waves to show how massive black holes could be formed dynamically from previous black hole mergers.

Fellows, advisors, and CIFAR Azrieli Global Scholars in the program planned for a July 2020 collaboration with AI and biomedical imaging researchers and companies.

For their knowledge mobilization plan, discussions with experts will explore how the hardware and software used for astrophysics and observational cosmology can be deployed in other fields of applications, and vice versa.

“When the hallowed halls of our academic institutions become at-times stifling corridors for the mundane and commonplace, CIFAR provides the intellectual freedom that is promised, but too often not achieved, within academia.”

JUNA KOLLMEIER
CIFAR Fellow, Carnegie Institution for Science

*The CHIME collaboration includes Gravity & the Extreme Universe program members J. Richard Bond (University of Toronto), Matt Dobbs (McGill), Mark Halpern (University of British Columbia), Gary Hinshaw (University of British Columbia), Victoria Kaspi (McGill University), Ue-Li Pen (University of Toronto), Scott Ransom (National Radio Astronomy Observatory), Ingrid Stairs (University of British Columbia) and CIFAR Azrieli Global Scholar alumnus Keith Vanderlinde (University of Toronto).
For Matt Dobbs, a fellow in CIFAR’s Gravity & the Extreme Universe program and professor at McGill University, being an astronomer is as much about people as it is about the stars.

The repeated, intense, and collaborative interactions with fellows, advisors, and CIFAR Azrieli Global Scholars in the program have shaped Dobbs’s work and his approach to it. “A lot of the change in what I do in my research program has happened either in CIFAR or with CIFAR,” he says.

His most recent adventures have taken him to CHIME, a unique array of cylindrical radio dishes in B.C. designed both to understand the large-scale structure of the universe and to hunt for mysterious fast radio bursts (FRBs).

Because fellows in the CIFAR program had expertise not only in cosmology, but also in extreme events like FRBs and supernovae, discussions at CIFAR meetings played an important role in realizing the telescope could serve dual purposes.

Dobbs is an expert in telescope design. He created and is maintaining the electronics system that handles the vast amounts of data being pulled down from the sky by CHIME. “The raw data rate of CHIME, what we’re actually sending into our electronics, is just enormous,” he says. “It’s 13.2 terabits per second, which is larger than all of Canada’s internet traffic.”
BIO-INSPIRED SOLAR ENERGY

The process of photosynthesis, which plants use to turn the sun’s energy into fuel, has been optimized over billions of years of evolution. The Bio-inspired Solar Energy program examines the biological, physical, and chemical lessons of photosynthetic organisms to create better ways of harvesting, transporting, and storing light energy.

The program was renewed for a second five-year term.

Curtis Berlinguette (University of British Columbia) and Greg Scholes (Princeton University) became co-directors and Gabriela Schlau-Cohen (MIT) was appointed as associate director. The new leaders will work with fellows, advisors, and CIFAR Azrieli Global Scholars in the program to advance our understanding of the catalysts required to drive useful chemical reactions from light.

Inspired by nature, fellows collaborated to provide a new perspective on sustainable catalysts.

CIFAR Azrieli Global Scholars Yogesh Surendranath (Massachusetts Institute of Technology), Jenny Y. Yang (University of California, Irvine), and others outlined the opportunities and challenges of replacing expensive and rare catalysts like gold and platinum with more readily available elements in a review in the journal Science. 24

Program members pushed our understanding of how systems (both biological and artificial) can efficiently harvest light in highly variable environments.

Advisory Committee Chair Richard Cogdell (University of Glasgow), CIFAR Azrieli Global Scholar Alumnus Nathaniel Gabor (University of California, Riverside), and Fellow Rienk Van Grondelle (VU Amsterdam) modelled how, by minimizing noise, light-harvesting molecules in plants can maximize power conversion. 25 This provided a theoretical basis for why molecules like chlorophyll a and b absorb different wavelengths of light.

Fellows, advisors, and CIFAR Azrieli Global Scholars in the program began building a roadmap for scaling CO2 utilization.

For the program’s knowledge mobilization plan, the challenges, solutions, and next steps for developing catalysts in systems that convert CO2 to useful chemical feedstocks like fuels and precursors to plastic were discussed at a virtual roundtable in March 2020, which included international experts in academia, industry, and national government laboratories.

"By bringing together a diverse cohort of experts and encouraging us to be free with ideas, failures, and successes, CIFAR catalyzes discussion and interaction to produce scientific advances beyond the sum of individuals.”

CHRISTOPHER CHANG
CIFAR Fellow, University of California, Berkeley
When asked to describe her research, Gabriela Schlau-Cohen, associate director of CIFAR’s Bio-inspired Solar Energy program and a chemistry professor at MIT, doesn’t skip a beat.

“We hit leaves with lasers,” she declares. “We are particularly interested in delving down to understand how the very first steps of photosynthesis work. How leaves grab light energy to convert it into electricity.”

By investigating the efficient and adaptable ways that nature has evolved to turn light into fuel, Schlau-Cohen and her colleagues in the program are hoping to create systems that can seed the next revolution in energy production.

Her methods for discovering the intricacies of photosynthesis rival science fiction with femtosecond lasers that record the movement of molecules on timescales almost too small to comprehend (a femtosecond is a millionth of a billionth of a second).

By understanding the processes used by plants, and with the help of the chemists, physicists, and engineers in the CIFAR program, Schlau-Cohen hopes to adapt that knowledge for human use, creating sustainable fuels using light and readily available compounds like carbon dioxide.
The CIFAR Learning in Machines & Brains program draws on neuro- and computer science to investigate how brains and artificial systems become intelligent through learning. The program’s fundamental approach — going back to basic questions rather than focusing on short-term technological advances — has the dual benefit of improving both the engineering of intelligent machines and understanding intelligence.

A provocative *Nature Neuroscience* paper by several fellows proposed a deep learning framework for brain research. Program co-director Yoshua Bengio (Université de Montréal/Mila), as well as Fellows Konrad Kording (University of Pennsylvania), Blake Richards (McGill University/Mila), and Joel Zylberberg (York University), were co-authors on the influential publication. Bengio, Richards, and Zylberberg co-presented a poster on how the brain coordinates learning between brain areas at the Cosyne conference, an important forum for interdisciplinary discussion in computational neuroscience.

Fellows in the program collaborated to apply machine learning to sustainability and climate change. This includes improving climate models, designing new materials for batteries and carbon capture, and visualizing the future impact of climate change.

A Catalyst Fund collaboration led to new research on training AI systems with human brain patterns. Alona Fyshe (University of Alberta/Amii) and Joel Zylberberg (York University) were awarded a New Frontiers in Research grant to use data from the brains of human experts while they do a task as a “teacher signal” in order to show AI algorithms how to gain expertise.

The program partnered with the European Laboratory for Learning and Intelligent Systems (ELLIS), a grassroots organization of leading European AI scientists, to advance cutting-edge machine learning research. In June 2020, they hosted their first joint virtual workshop to discuss approaches to using contact-tracing apps during the COVID-19 pandemic.

“My membership in the CIFAR Learning in Machines & Brains program opens the door for non-traditional research interactions that have had a huge impact on my research program. Thanks to CIFAR, I am tapped into a network of researchers who have similar interests in this sort of interdisciplinary research that links computer science with neuroscience.”

Blake Richards
CIFAR Fellow and Canada CIFAR AI Chair, McGill University/Mila
One of Chelsea Finn’s first big scientific breakthroughs came in 2015, when she and a team of researchers at the University of California, Berkeley built a robot that learned to pick up a bag of rice with a spatula and put it in a bowl. She was excited with the result, but Finn, who is now a fellow in CIFAR’s Learning in Machines & Brains program, an assistant professor at Stanford University, and a member of the Google Brain team, was frustrated that her spatula-wielding robot would balk at a spoon. “What the robot really learned wasn’t how to use spatulas, it learned how to use that spatula to lift that object into that bowl in that room,” she says.

Finn, like her colleagues in the CIFAR program, takes inspiration from the human brain’s ability to learn quickly and generalize easily. She believes that applying lessons from human capabilities to robotic systems will make them more useful and is interested not just in how to increase productivity, but also in the nature of learning itself.

“I like robots because they are grounded in the real world,” she says. “If you can get something working on a robot, then you can convince yourself that you’ve actually solved an important challenge.”
The Quantum Information Science program focuses on the fundamental science behind quantum information in order to discover how best to harness it, solve important computational problems, and develop new insights into physics and information. The program takes a broad interdisciplinary approach, bringing together physicists, computer scientists, and others working in connected disciplines in order to address the field’s most fundamental challenges.

A fellow’s breakthrough ended 90 years of controversy about the timing of quantum tunnelling. After nearly 20 years of experiments in his lab and 17 years as a fellow in the program, Aephraim Steinberg (University of Toronto) measured how much time a quantum particle takes to tunnel through a laser barrier. This important result, accepted for publication in *Nature*, shed light on fundamental properties of quantum systems and allowed for clearer thinking about what is actually happening in a quantum computer.

Quantum supremacy was achieved by a team including Associate Fellow David Bacon (Google). The result, the first time a real quantum computer was able to quickly solve a problem that would give a normal, classical computer pause, was built on decades of experimental and theoretical work by members of the program. This included Advisor John Preskill (California Institute of Technology), who coined the term “Quantum Supremacy,” and Fellow Alexandre Blais (Université de Sherbrooke), who first proposed a superconducting quantum computer.

Leveraging their cross-disciplinary experience, program members identified quantum hardware and quantum computing applications as opportunities for societal impact.

Fellows and advisors will engage experts in academia, industry, and government in discussions about hardware design, use cases, and policy considerations to advance the quantum technology ecosystem.

> “CIFAR’s Quantum Information Science program is a conduit for important ideas in a highly interdisciplinary field. The program provides a means through which I can engage in long-term interactions with other researchers working in sub-areas of quantum information that differ from my own, which are not well-supported by traditional academic structures.”

JOHN WATROUS
CIFAR Fellow, University of Waterloo
There is no standard way to make a quantum computer. Much like building a house, there are dozens of viable variations. Success depends on the design and the appropriate combination of raw materials.

The quantum quarry is full of options: there are ion traps, superconductors, optical lattices, quantum dots, and more. Each has its own benefits and pitfalls. CIFAR’s Quantum Information Science program brings people from these different areas together with theorists to make advances in quantum computation and communication.

For Stephanie Simmons, a fellow in the program and an assistant professor of physics at Vancouver’s Simon Fraser University, nothing beats the combination of silicon and photons.

She is admittedly bullish about her choice of quantum hardware. “You don’t ever really want to bet against silicon,” she explains. “Given its history, silicon always wins. We know how to work with it better than almost any other material on earth. That’s why we have supercomputers in our pockets.”

Simmons values the opportunity she has to contribute to the CIFAR Quantum Information Science program, a space for people working on different aspects of quantum computing to come together. “We need a space where we can all communicate effectively, and continue to build up a common language.”
This program is working towards bringing on the Quantum Age by integrating theory, materials synthesis, and experiment to explore and advance the frontiers of quantum physics. The program is structured around four main thrusts: quantum spin liquids; topological materials; the pseudogap phase of cuprate superconductors; and strange metals. The team is developing new tools, new models, and new materials to understand the working principles of quantum matter.

A discovery about how cuprates achieve superconductivity provided a major future direction for the program.

Inspired by discussions with co-director Leon Balents (University of California, Santa Barbara) and Fellow Subir Sachdev (Harvard University), Louis Taillefer (Université de Sherbrooke) and colleagues discovered a giant thermal Hall effect in the pseudogap phase of cuprates, which may be responsible for superconductivity in these materials.30

A new laser developed by Fellow Andrea Damascelli (University of British Columbia) will help program members gain new understanding about high-temperature superconductivity in new materials.31

The laser allows time-resolved photoemission spectroscopy and can be used to visualize electron scattering processes at ultrafast timescales.

Kate Ross (Colorado State University) and collaborators found intriguing potential in a new rare-earth pyrochlore, $\text{Yb}_2\text{Ge}_2\text{O}_7$.32

This previously unstudied material, which is related to the well-studied $\text{Yb}_2\text{Ti}_2\text{O}_7$, has properties very close to the edges of classical phase boundaries and represents an ideal system for studying quantum magnetism.

The program partnered with the Institut quantique at the Université de Sherbrooke to foster a highly interactive program meeting in Orford, Quebec.

Fellows and advisors in the program identified the field of advanced measurements and instrumentation, particularly neutron scattering, as a key area for knowledge mobilization.

In December 2020, the program will meet with academic, industrial and policy experts to discuss the future of neutron facilities in Canada, which are key for materials research and industrial applications.

“CIFAR allows me to connect to the top researchers in the field and regularly bounce ideas off of them. The meetings are extremely rewarding, exciting, and have led to new directions and collaborations for my research program.”

KATE ROSS
CIFAR Fellow & Azrieli Global Scholar Alumna, Colorado State University
Electrons usually have difficulty flowing through materials. They bump into things, get stuck to atoms and, like easily distracted children in an arcade, struggle to make it through unimpeded.

However, in certain materials under the right conditions, electrons flow effortlessly. They zoom through without any loss of energy. This phenomenon is called superconductivity, and understanding it would open the door to revolutions in computation and power transmission.

Pablo Jarillo–Herrero, a fellow in the Quantum Materials program, professor of physics at MIT, and rising star in condensed matter physics who was recently awarded the prestigious Wolf Prize in Physics, finds the very fact of superconductivity strange and counterintuitive. Jarillo–Herrero and his team discovered in 2018 that two layers of single-atom-thick graphene could become a superconductor when pressed together and twisted at exactly 1.1 degrees with respect to each other. This is true despite the fact that neither layer is a particularly good conductor on its own, and that the effect goes away when the layers are lined up perfectly.

Jarillo–Herrero, like his colleagues in the Quantum Materials program, is fascinated by these macro manifestations of effects happening on the smallest of scales.

“Very often, to see quantum mechanical effects, you have to go to individual electrons or atoms,” he says. “[Superconductivity] is something that you can see in big pieces of materials. It is one of those remarkable, all-around striking physics phenomena.”
IDEAS DRIVING PROFOUND CHANGE

THE FOLLOWING ARE COMPLETING THEIR WORK AS CIFAR PROGRAMS

GENETIC NETWORKS (2005 – 2020)

The Genetic Networks program charted genetic and molecular interactions to understand how biological systems work and how they fail. The program closed in 2019.

In the program’s final term (2014-2020), members of the program developed the first genetic interaction map of a yeast cell.33

“[program] meetings, I always feel like nothing is off the table: no problem is too big to solve, no experimental difficulty is insurmountable, and most importantly, and in contrast to conventional funding agencies, no project is ‘too ambitious.’ Interacting with my CIFAR collaborators has made my research program more creative as well as providing access to technical advantages from other labs.”

RACHEL MARTIN, Fellow, Molecular Architecture of Life, University of California, Irvine

INSTITUTIONS, ORGANIZATIONS & GROWTH (2004 – 2020)

The Institutions, Organizations & Growth program studied why some nations succeed economically while others continually fail; why institutions that foster wealth and well-being in one culture, location, or historical period may be less effective in another; and what policies will create the greatest potential for progress. The program will hold its final meeting when it is possible to hold in-person meetings again following the pandemic.

In its final term (2014–2020), the program provided fertile ground for a steady output of seminal scholarship on the foundations of social order, including how institutions and social orders may support each other.

SUPPORTERS

BMO Financial Group, Anonymous Donor
MOLECULAR ARCHITECTURE OF LIFE (2014 – 2021)

Until recently, we could only understand the processes of life by looking at static pictures of its building blocks. But life is dynamic, and processes are in constant states of change. Using tools such as ultrafast imaging that can record molecules in motion, the Molecular Architecture of Life program looks to understand life at the smallest levels. The ultimate goal is to create a detailed molecular map of the cell. The program will be concluding activities in the calendar year 2021.

Fellows in the program discovered receptors which could enable better drug design.

Wolfgang Baumeister (Max Planck Institute of Biochemistry), Oliver Ernst (University of Toronto), and Krzysztof Palczewski (University of California, Irvine) found the structure of G protein–coupled receptors (GPCRs) at a molecular level. Using cryo-electron microscopy and a “molecular ruler,” they discovered that the receptors, which are often the target of pharmaceuticals, organize in rows of dimers.

A collaboration between two fellows uncovered that a structural protein in the eye has a surprising function.

Rachel Martin (University of California, Irvine) and Dwayne Miller (University of Toronto) studied the complex molecular interactions of γS-crystallin, a protein found in the lens of the eye, and found it is actually the eye’s last line of defence against oxidation.

Fellows developed a new way to measure proteins on a molecular level.

Oliver Ernst (University of Toronto) and John Vederas (University of Alberta) created a new amino acid that can be incorporated into proteins to find out how they move and interact with the inside and outside of cells.

The Successful Societies program focused on the interaction of institutional and cultural frameworks to understand how societies create opportunities for individual fulfillment and happiness. The program held a virtual meeting in May 2020 to transition to alumni.

In fall 2019, the program held two capstone events:

- A roundtable in New York City with civil society leaders, in partnership with the Ford Foundation, to discuss the roles of representation, recognition, and narratives in reinforcing inequalities.
- A two-day capstone conference at Harvard’s Weatherhead Center for International Affairs, bringing together program members from throughout its 17-year history to reflect on the impact of the program. This included a public event to celebrate the launch of a special edition of Daedalus focused on inequality. Published by the American Academy of Arts & Sciences, Inequality as a Multidimensional Process features interdisciplinary research from across the program that seeks to understand how cultural and institutional frameworks interact to produce inequality. The event’s discussions focused on the implications of inequality research for current and emerging policy.

SUPPORTERS

BMO Financial Group, Anonymous Donor

Canada Life
"CIFAR’s global community of top researchers sets the bar for what research should be."
Laura Arrell, managing director of the Arrell Family Foundation, speaks with Leslie McCarley, CIFAR’s Vice-President, Advancement

Laura Arrell is the managing director of the Arrell Family Foundation, which works to improve human and planetary health through food. Although she had been a director of her family’s foundation for many years, she took on the task of running it four years ago, in 2016. The foundation began supporting CIFAR that same year.

Prior to managing the foundation, she was a managing director at Toronto investment bank Raymond James, where she worked for 15 years. Arrell is also a mother of three children, and is passionate about travel and food.

How did you become involved with CIFAR?

We became involved with CIFAR through Alan Bernstein, whom we got to know when he provided great advice to our family leading up to our gift to the University of Guelph to create the Arrell Food Institute. I have come to work closely with him related to the Arrell Food Institute, where he serves as an advisor. He has incredible science acumen and there couldn’t be a better leader for CIFAR.

Strong organizations are led by brilliant leaders, and Alan fits the bill.

What has been the most exciting and interesting aspect of your involvement?

If we want to find solutions to the world’s biggest challenges, we have to be agnostic about borders, and collaborate across disciplines. CIFAR’s global community of top researchers sets the bar for what research should be. I’m inspired by the unique borderless approach to research and policy influence.

Is there a particular area of the work that CIFAR does that has been most compelling to you?

The research CIFAR is doing in its Humans & the Microbiome program — with its potential implications for mental health and overall well-being — is absolutely fascinating. There’s no denying these days that gut health and the microbiome should be a key area of research focus and application.

I’m also very interested in brain research. I have close personal connections with people living with Parkinson’s and bipolar disorder, and so research with potential applications for them has been a big focus of our foundation. CIFAR’s Brain, Mind & Consciousness program is doing really important, fundamental work understanding the underpinnings of those conditions.

With many demands on your time and resources, why give to CIFAR? Why now?

I think we’re really backing a good leader. Both my father and I, with our business backgrounds, look at grants that we’re making as investments. You wouldn’t invest in a publicly listed company with a weak CEO. We really believe in backing good people, and Alan, and CIFAR, are among the very best.

What do you wish other people knew about CIFAR, and what might you say to somebody else considering supporting the work that we do?

It’s funny you ask, because I often talk about CIFAR with friends and encourage them to get involved. There are so many great areas of activity that I can usually find a fit for someone’s priorities in life.

As we get great research coming out in key areas like AI and the microbiome that are in the public interest right now, hopefully the public awareness of CIFAR grows. I think funders want to support good people and good research, and I certainly think that CIFAR is a very well-run organization that knows how to build teams and get the best of the best together. You’re a class act!
Advancing Canada’s Leadership in AI

CIFAR PAN-CANADIAN AI STRATEGY

Now in its fourth year, the CIFAR Pan-Canadian AI Strategy is fuelling research and innovation and applying AI to address important challenges facing society, including health, the climate crisis, and the COVID-19 pandemic.

Our Canada CIFAR AI Chairs Program has recruited and retained 80 world-class researchers. CIFAR provides Canada CIFAR AI Chairs with long-term, dedicated research funding to support their ideas and help them train the next generation of AI leaders in Canada.

We supported a range of training opportunities across Canada to help students and early-career researchers from all over the world develop skills, expertise, and networks.

The CIFAR OSMO AI4Good Lab promotes an inclusive tech culture by providing undergraduate women enrolled in STEM programs a hands-on, collaborative learning experience. The 2019 cohort developed a range of projects, such as Ad Awareness, a prototype that detects gender bias in commercials; AI.D, an intelligent schedule tracker for chronic pain; and Bean There, a chatbot that helps students navigate the mental health landscape at their university.

The annual CIFAR Deep Learning + Reinforcement Learning (DLRL) Summer School provided an opportunity for the world’s brightest graduate students, postdoctoral fellows, and professionals to come to Canada and learn from world-class AI pioneers such as Yoshua Bengio, Richard Sutton, and Doina Precup, deepen their AI knowledge, and create new connections with Canadian AI startups and companies.
AI FOR HEALTH

AI’s ability to draw insights from huge datasets makes it a powerful tool for data-rich health settings. AI could help doctors diagnose diseases more quickly and make the system more efficient. But it could also pose risks to privacy and security if not properly regulated.

To understand AI’s role in the future of Canadian health care, we convened the AI for Health (AI4H) Task force, a group of 17 leaders from across the AI, health research, and innovation ecosystems.

Led by the esteemed co-chairs David Naylor (University of Toronto) and Tim Evans (McGill University), the task force worked closely with government officials at the federal and provincial levels to create a set of recommendations.

The report, Building a Learning Health System for Canadians, recommends the creation of a coordinated, integrated AI4H strategy.38

“Being surrounded by intelligent women with a wide variety of educational backgrounds empowered me to ask any kind of question, where in other environments I most definitely would have kept quiet.”

GILLIAN CARTAR
2019 AI4Good Summer Lab participant

<table>
<thead>
<tr>
<th>DLRL SUMMER SCHOOL 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICANTS</td>
</tr>
<tr>
<td>1,200</td>
</tr>
<tr>
<td>ATTENDEES</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>ATTENDEES WHO IDENTIFIED AS WOMEN</td>
</tr>
<tr>
<td>38%</td>
</tr>
<tr>
<td>INTERNATIONAL PARTICIPANTS</td>
</tr>
<tr>
<td>128</td>
</tr>
</tbody>
</table>

The 2019 CIFAR DLRL Summer School, held in Edmonton, Alberta from July 24 to August 2, 2019, was sponsored by Alberta Innovates, DeepMind, LG, The Climate Corporation, AltaML, and other local partners.
DOINA PRECUP IS TRAINING THE NEXT GENERATION OF WOMEN IN AI.

Canada CIFAR AI Chair Doina Precup, an associate professor with McGill University’s School of Computer Science, an academic core member of Mila, and Research Team Lead at DeepMind Montreal, is teaching machines to understand and interact with the world the way humans do through reinforcement learning (RL). RL is a technique that enables agents to learn from their interactions with the environment through trial and error, and through rewards and feedback.

Growing up in communist Romania, Precup says studying computer science was not unusual for women. She noticed that was not the case in Canada or the United States.

Together with Angelique Manella, her colleague at McGill University, Precup founded the CIFAR OSMO AI4Good Lab, a summer training program for undergraduate women. The Lab provides lectures, workshops, and networking opportunities. It also provides a small stipend to participants to help offset the cost of devoting six weeks to training.

Precup explains that a career path in AI presents many barriers for women, and emphasizes that it is important to have multiple paths of entry for underrepresented groups in AI.

“We need non-traditional paths for people who are from underrepresented groups to come into the field because they may not take the traditional one,” she explains.
“We envision robots moving out of the industry environment where they only have partial knowledge, and operating in more human-centric environments,” says Canada CIFAR AI Chair Angela Schoellig, who is an assistant professor at the University of Toronto Institute of Aerospace Studies and affiliated with the Vector Institute in Toronto. Her research applies control theory to machines such as robots, drones, and autonomous vehicles. She is one of a dozen researchers in the world who began pioneering research on safety and performance on robotics using AI five years ago. Now the area of research has expanded.

Schoellig’s work in autonomous vehicles has gained her widespread recognition in the international community. Schoellig was named one of 35 Innovators under 35 by MIT Review in 2017. She is also a Canada Research Chair in Machine Learning for Robotics and Control.

Schoellig completed her PhD at ETH Zurich in Switzerland before coming to Canada. She says her favourite aspect of living in Canada is its multiculturalism.

“When in some ways it feels like Canada is living in the future because of how mixed it is. We never do research in isolation — it’s the kind of ecosystem that accelerates innovation and allows researchers to have big goals,” she says.

Canada CIFAR AI Chair Angel Chang is laying the groundwork for AI technologies that will make human–robot interaction more natural. With robotic agents already on the ground of some factory floors, Chang’s research will support future applications that enable robotic agents to become adept at operating in a 3D world.

An assistant professor at Simon Fraser University and a fellow at Amii, Chang specializes in natural language processing, an AI technique that teaches machines to understand and process the language of humans. Specifically, she’s focused on generating 3D scenes from text and was inspired by the complexities of how humans understand language.

“When you think of how babies learn language, we read them books that teach them about colours and shapes,” she says.

“In order to understand language, it’s important to consider it not in isolation, but in connection with images and objects in the real world.”
LEADING GLOBAL CONVERSATIONS ABOUT AI & SOCIETY

CIFAR brings together experts from across sectors, including academia, industry, law, ethics, healthcare, and government, to discuss, collaborate, and act on the most important challenges that AI presents to society.

This year we worked with international organizations and national governments around the world to lead global policy conversations and bridge the divide between powerful AI technologies and the policies that will ensure their responsible use.

Eight AI & Society workshops generated a deeper understanding of how AI impacts health, security and culture.

At one workshop, a team of experts explored opportunities where AI can be applied to combat climate change. They published an initial framework for leveraging digital technology for sustainability in March 2020 and the Montreal Statement on Sustainability in the Digital Age in summer 2020. The statement calls for a global collaboration among business, civil society, researchers, and innovators to use AI to help build a sustainable and equitable world.

We examined the future of work, data governance, and regulatory innovation for Canada and the U.S.

We partnered with Innovation, Science & Economic Development Canada and the U.S. Department of State in January 2020 to consider innovative public policy that develops competitive AI strategies for economic growth, while mitigating potential societal risks for both countries.

Our analysis of AI strategies from 28 countries provided a global snapshot of the rapidly evolving technology policy landscape.

The second edition of our report, Building an AI World: Report on National and Regional Strategies, highlighted that countries with national AI strategies continue to be concentrated among the advanced economies of Western Europe, North America and East Asia. New strategies also tend to be more comprehensive, addressing most or all of eight major policy areas (research, talent development, skills, industrial policy, ethics, data and digital infrastructure, AI in government, and inclusion).
Indigenous researchers and experts from around the world teamed up to publish *Indigenous Protocol and Artificial Intelligence*, a position paper that provides a starting place for designing ethical AI through an Indigenous-centred approach.43

“Many of the guidelines and manifestos that are coming out mostly centre around the human, which is not in alignment with most Indigenous methodologies,” explains Jason Edward Lewis, a Hawaiian-Samoan professor with Concordia University’s Design and Computation Arts department and a member of the workshop leadership group.

“We as a society allow AI to collect our data and make decisions that impact us, so we should develop an understanding of what kind of relationship we want to have with AI,” says Lewis. “Is AI a slave to a human master, or do we want to create intelligent systems with respect? It’s a better world for all of us if we treat these systems with respect, and teach them to treat us with respect.”

The Indigenous Protocol & AI workshop team, supported by the CIFAR AI & Society program, developed the paper following discussions that took place over 20 months and across 20 time zones. Those discussions included two workshops which brought together people from Indigenous communities across Aotearoa (New Zealand), Australia, North America, and the Pacific Region. The paper offers a range of ideas, questions, and approaches to be considered when centering Indigenous knowledge in the development of AI.
We support bold ideas and creative people because the next world-changing breakthrough might be just one conversation away. By cultivating the next generation of research leaders through initiatives like the CIFAR Azrieli Global Scholars program and by enabling high-risk, high-reward ideas through Catalyst Funds, we accelerate discovery.
CULTIVATING THE NEXT GENERATION OF RESEARCH LEADERS

A diverse cohort of 14 inspiring early-career researchers was selected for the 2019-2021 CIFAR Azrieli Global Scholars program.

Scholars from eight countries of citizenship joined five CIFAR research programs. The international cohort will contribute new energy and ideas to the programs they join, while developing their own professional networks and skills.

We developed interactive and virtual opportunities for CIFAR Azrieli Global Scholars to meet, learn, and collaborate during the pandemic.

Twenty-five current and past CIFAR Azrieli Global Scholars received mentorship training in a virtual session led by Dr. Geraldine Richmond, Program Director of COACH Global and past president of the American Association for the Advancement of Science.

CIFAR Azrieli Global Scholars submitted five collaborative Catalyst Fund proposals.

To foster imaginative, high-risk, high-reward interdisciplinary collaborations among early-career researchers, we facilitated video calls between CIFAR Azrieli Global Scholars to explore each other’s work and brainstorm on potential future projects. These sessions led to five Catalyst Fund proposals submitted in June, creatively spanning diverse programs and disciplines, including a potential collaboration between the Gravity & the Extreme Universe and the Azrieli Brain, Mind & Consciousness programs.

This year, 13 CIFAR Azrieli Global Scholars took part in 17 leadership development opportunities supported by the Love Family Leadership Development Fund. This financial support provides access to one-on-one coaching, online resources, and courses or conferences to advance skills.

Enabling High-Risk, High-Reward Ideas

Our Catalyst Funds are time-limited grants of approximately $50,000 that facilitate and support high-risk ideas and projects within and across CIFAR’s portfolio of research programs. They provide flexibility for early-stage projects, encourage interdisciplinary collaborations, and address emerging and exploratory themes within or between research programs.

Our Catalyst Funds

CATALYST FUNDS

32

+ 14 fast-response COVID-19 & AI Catalyst Grants

$1.58M

committed to high-risk, high-reward projects that will accelerate discovery
CATALYST FUND HIGHLIGHTS

CIFAR’s Catalyst Funds often support multi-year collaborations. Several of these interdisciplinary projects had significant impacts realized this year.

BRAINSTEM AROUSAL SYSTEMS: EFFECTS ON CONSCIOUSNESS AND COGNITION
In February 2020, David Menon’s lab published a study in the journal Human Brain Mapping showing how the brain uses different connection patterns to perform the wide range of tasks we need it to.44 This builds on work supported through a 2017 Catalyst Fund project with Koerner Fellow Adrian Owen, which investigates how the brain’s network reacts to sleep and sedation.

Azrieli Brain, Mind & Consciousness
David Menon (Cambridge University) & Adrian Owen (Western University)

PANDEMICS & EXPANDED PERSONAL SPACE
A 2016 Catalyst Grant brought Graham Taylor, Joel Levine, and Takao Hensch together to study animal social behaviour using AI image recognition. Building on this fruitful collaboration, they planned a cross-programmatic Collective Intelligence workshop for June 2020 to examine the many ways intelligence manifests in group behaviour, which was adapted to become the virtual Pandemics & Expanded Personal Space workshop in light of COVID-19.

Learning in Machines & Brains, Child & Brain Development
Graham Taylor (Canada CIFAR AI Chair, Learning in Machines & Brains, University of Guelph), Joel Levine (Child & Brain Development, University of Toronto Mississauga) & Takao Hensch (Child & Brain Development, Harvard University)

DETECTING THE ROOTS OF CONSCIOUSNESS IN INFANTS
An interdisciplinary Catalyst Fund project to examine the roots of consciousness in infants led to fruitful collaboration between Janet Werker and Alona Fyshe, who, together with other colleagues, proposed a project about the influence of oral language skills, home language and culture, and digital media on literacy development. The project was awarded a $2.5 million Partnership Grant from Canada’s Social Science and Humanities Research Council (SSHRC). Werker and Fyshe, two scholars in vastly different academic areas but with a shared interest in language and brain development, met through CIFAR.

Child & Brain Development, Azrieli Brain, Mind & Consciousness, Learning in Machines & Brains
Janet Werker (Child & Brain Development, UBC) & Alona Fyshe (CIFAR Azrieli Global Scholar 2016–2018, Brain, Mind & Consciousness, Fellow, Learning in Machines & Brains, Canada CIFAR AI Chair, Amii, University of Alberta)
Catalyst Fund projects often focus on emerging and exploratory themes; below are three examples from this year’s recipients.

SILICON TELECOM COLOUR CENTRES FOR QUANTUM INFORMATION SCIENCE

Networking quantum computers can unleash tremendous computational power, but this requires quantum information to be transmitted over large distances. The hardware to make this dream a reality is still in development, but CIFAR Fellow Stephanie Simmons may have recently had a breakthrough working in silicon. To evaluate whether her discovery could enable a quantum internet, she is collaborating with CIFAR Fellow Lilian Childress, who is a world-renowned expert in the nitrogen-vacancy colour centre in diamond.

Quantum Information Science
Stephanie Simmons (Simon Fraser University) & Lilian Childress (McGill University)

NULL DETECTION OF LIFE: TOWARDS A MORE REFINED UNDERSTANDING OF THE TRUE LIMITS OF HABITABILITY

Almost everywhere researchers have ever looked on Earth — deep underwater, deep underground, up in the stratosphere — there is life. When life isn’t found, it’s often assumed to be because the instruments used weren’t sensitive enough to detect it. Sometimes that may be the case, but with this project, researchers will search for naturally sterile environments and, combining literature review, lab analysis, and computational modelling, find out exactly what makes them so.

Earth 4D: Subsurface Science & Exploration
Heather Graham (NASA), Bénédicte Ménez (Paris Diderot University) & Magdalena Osburn (Northwestern University)

DISCOVERING AND IMPLEMENTING THE FUNCTIONS OF CONSCIOUSNESS IN LEARNING MACHINES

Current AI approaches do not often incorporate concepts of consciousness, and yet there is increasing evidence that intelligence and consciousness go hand in hand. In this Catalyst Fund project, researchers from across CIFAR’s Learning in Machines & Brains and Brain, Mind & Consciousness programs will come together for a series of workshops to strengthen the links between the neuroscientific and philosophical study of consciousness and AI research.

Learning in Machines & Brains and Brain, Mind & Consciousness
Blake Richards (Learning in Machines & Brains, Canada CIFAR AI Chair, McGill), Yoshua Bengio (Learning in Machines & Brains, Canada CIFAR AI Chair, Mila, Université de Montréal), Anil K. Seth (Brain, Mind & Consciousness, University of Sussex) & Alona Fyshe (Learning in Machines & Brains, CIFAR Azrieli Global Scholar 2016–2018, Canada CIFAR AI Chair, Amii, University of Alberta)
Creating Societal Impact

MOBILIZING KNOWLEDGE TO TRANSFORM OUR WORLD

We invite experts in industry, civil society, healthcare, and government to join global research leaders for in-depth, cross-sectoral, future-focused conversations that drive change and innovation.

In 2019–2020 we initiated impact plans focusing on health, policy, and technology.

HEALTH & WELL-BEING

• We launched working groups that are leading the development of new public health curricula which underscore the important role of the microbiome in human health and development.

INDUSTRY & TECHNOLOGY

• We fostered collaborative projects between academia and industry for more immersive Extended Reality (XR) experiences and a better understanding of human consciousness.
• We convened experts to develop a research and development roadmap for commercial-scale CO₂ electroreduction systems, a promising avenue for carbon-neutral fuels and climate change mitigation.
• We established a new partnership with the International Space Science Institute to explore the science, tools, and mission requirements for the search for subsurface life on Mars.
• We partnered with the Canadian Neutron Initiative to shape a national neutron strategy for rebuilding Canada’s capacity for materials research with neutron beams.
POLICY & SOCIETY

- We engaged civil society organizations and foundations to identify and combat factors contributing to persistent social inequality.
- We briefed policy-makers on the role of biological, environmental, and social factors on child health and development.

Our research, policy, and event briefs provided valuable insights to our communities and broader networks.

Fourteen reports were published this year, from case studies on how virtual reality could be used to create more effective psychology experiments to summaries of the latest clean carbon discoveries. They served as go-to references for our workshop participants and beyond.

Rebecca Finlay, CIFAR’s Vice-President, Engagement & Public Policy, knew that research could be mobilized into action with careful planning and strategic support. This is why she founded our Knowledge Mobilization practice in 2014.

Five years later, CIFAR’s knowledge mobilization work is thriving. In 2019 Finlay was elected a Fellow of the American Association for the Advancement of Science (AAAS) “for distinguished work in science communication for innovators in business, policy making and civil society, thereby accelerating the societal impact of scientific research.” This is the first time a member of CIFAR’s administration team has been elected as a fellow of the AAAS for their work at CIFAR.

THIS YEAR, 5 KNOWLEDGE MOBILIZATION EVENTS ENGAGED 81 PEOPLE FROM 6 COUNTRIES IN MEANINGFUL DISCUSSION.

90% of attendees reported the events were good/excellent
92% reported improved understanding of the topic
84% gained new ideas that will benefit their work
94% plan to integrate new ideas into their work
82% plan to share their new learnings with their network
81% made new connections
SPOTLIGHT: KNOWLEDGE MOBILIZATION IN ACTION

WEAVING THE MICROBIOME INTO NEW PUBLIC HEALTH PROGRAMS, PRACTICES, AND POLICIES.

Research in CIFAR’s Humans & the Microbiome program has clearly established the important role our microbiome — the bacteria, viruses, and fungi that live in and on us — has to play in our health. However, the research is so new that few students of public health learn about it as part of their formal curricula.

With COVID-19, many people are dramatically shifting their social behaviours (e.g., isolation, hand-washing), diets, and built environments (e.g., frequent surface disinfection), some of which could have negative implications for the microbiome. The question is, what does this mean for promoting health and wellness in the current pandemic and in the world after COVID-19? Integrating the microbiome into the public health curriculum has never been more timely.

To bridge this gap, fellows and CIFAR Azrieli Global Scholars in the Humans & the Microbiome program, in discussions with senior leaders at public health schools in Canada and the U.S., are establishing ways to incorporate microbiome-related curriculum materials in public health schools. Program members met for the fifth time with public health school leaders in March 2020 and plan to continue this work through an ongoing working group.

“As CIFAR’s leadership in convening research on the human microbiome is an important contribution to the evidence base supporting public health decision-making today and into the future.”

HEATHER ORPANA
Public Health Agency of Canada

DEVELOPING IMMERSIVE EXPERIENCES AT THE INTERSECTION OF XR, NEUROTECHNOLOGY, AND BRAIN RESEARCH.

Extended Reality (XR), the suite of technologies including augmented, virtual, and mixed reality, can create experiences that feel incredibly real. Artists and innovators have used these technologies to create games and films that totally immerse the user in an imagined world. However, there are still many open questions about what exactly our brains are doing to convince us that the worlds we see and hear are real, and XR platforms could be the perfect tool to study this aspect of consciousness.

Fellows and CIFAR Azrieli Global Scholars in the Azrieli Brain, Mind & Consciousness program are working with international academic experts, developers, and content creators from the XR industry to understand the nature of immersiveness and harness it for both entertainment and research. At the third roundtable in May 2020, they explored the hurdles to developing more immersive XR experiences, as well as how XR can lead to a better understanding of human consciousness and brain-body interactions.

“There is no doubt that XR technologies can be used to study cognition and perception, but it also served as a collaborative hotbed for discussion on how creativity and storytelling can propel incredible research toward the cultural celebration it deserves.”

PIETRO GAGLIANO
Transforms.ai

DEVELOPING NEW WAYS TO EFFICIENTLY CONVERT CARBON DIOXIDE IN THE AIR INTO CLEAN, EFFICIENT, AND RENEWABLE FUELS.

Our economy is based on carbon from fossil fuels we pull from the ground, and the process of turning that fuel into energy and useful products releases CO2 that accelerates climate change. If we could efficiently pull carbon from the air and turn it into fuels and plastics, we would no longer have to extract it from the ground, and we could move closer to a renewable future. While technically possible, this procedure requires a litany of complex processes that are not yet scalable.

Fellows and CIFAR Azrieli Global Scholars in CIFAR’s Bio-inspired Solar Energy program are meeting with experts outside the program to identify how to accomplish each step in the CO2 conversion process. In March 2020, at the second in a series of roundtables, they had a fruitful meeting with international experts from academia, industry, and national government laboratories to discuss catalysts, the chemicals that accelerate the crucial CO2 electroreduction reaction.

“The discussion of high-temperature catalysts and comparison to low-temperature catalysts was very useful in highlighting the obstacles that should be overcome for low-temperature catalysis. I will be using it to design experiments that attempt to resolve these obstacles and move the field towards development of low-temperature catalysts on an increased scale.”

PARTICIPANT
Effectiveness of Catalysts in CO2 Electroreduction Systems workshop
CIFAR’s public engagement activities serve two important functions: to fuel scientific curiosity among the public by sharing the latest research from top scholars and scientists from around the world, and to share advances within our programs back to the stakeholders who support us.

Through a partnership with The Walrus, we engaged new audiences with our first formal public engagement program. CIFAR Presents: The Walrus Talks, a series of three public events, featured our fellows and focused on the key themes addressed by our research programs. Talks were held across Canada in Montreal, the National Capital Region, and Calgary. A fourth talk, scheduled to take place in New York City on April 14, was rescheduled due to COVID-19 and will be held virtually in October 2020 from Toronto.

When the COVID-19 pandemic began, we grew our public engagement program, moving it online, and launched CIFAR Virtual Talks. CIFAR Virtual Talks is a bi-weekly series of free 30-minute events connecting global audiences to the people behind important new research. All CIFAR Virtual Talks are archived on our YouTube channel.

We grew our online community exponentially. Our renewed content strategy attracted new followers to our social media channels. Our total following across Twitter, Facebook, YouTube, and LinkedIn grew by 6,220, bringing our online community to 24,815 followers and subscribers. This represents a 33% increase over the year, which is 100x faster growth than average for non-profit organizations. Our online publications and digital content continued to draw an international audience, with 140,554 views of cifar.ca from outside of Canada, a 9% increase over the previous year.
“I give because CIFAR’s approach is most likely to lead to a deeper understanding of the important questions we face now and that we are going to face in the future.”
Patricia Baird is a medical geneticist in Vancouver, a UBC University Killam Distinguished Professor Emerita, an Officer of the Order of Canada, and a Member of the Order of British Columbia.

Baird joined CIFAR’s Research Council in 1987 and was an associate fellow in CIFAR’s Population Health program (1987 — 1998). Members were early champions of the social determinants of health, and the program spawned a new way of approaching public health in government and society.

She went on to chair a joint Advisory Committee of the Human Development program (founded in 1993) that was a precursor to CIFAR’s current Child & Brain Development program. Baird was also a member of CIFAR’s Board of Directors (1991 – 2010).

Leslie McCarley, CIFAR’s Vice-President, Advancement, spoke with Baird about her longstanding commitment to CIFAR.

Thank you for agreeing to share your CIFAR story.

To begin, how did you become involved with CIFAR?

I found out about CIFAR through [CIFAR’s founding President] Fraser Mustard in the mid-1980s. I was head of the department of Medical Genetics at UBC, and he was building CIFAR. He would come to B.C. on occasion to interview people as possible fellows for CIFAR’s programs, and he made a habit of coming by my office and taking me for coffee.

Fraser was a real force of nature. He asked me to become a member of the Research Council 33 years ago. I said yes, of course. Ever since, I’ve been involved in one way or another with CIFAR.

I was most deeply involved in CIFAR’s Population Health and Human Development programs. I found that interesting because, not only was I present at the birth of some of the new ways of looking at population health, but I also saw ideas evolve into mature insights. These insights became accepted and adopted by the medical and policy communities.

So I saw the whole process, from important questions — like “why are some people healthy and others not?” — to ideas being fleshed out with evidence, and then brought to the attention of policy-makers and clinicians. This was a panorama that showed how, in any given area, the whole idea of CIFAR can work.

You outline CIFAR’s process nicely: identifying an important question, bringing people together, spurring ideas, and then moving evidence forward to change practices and policies. What has been the most exciting and interesting aspect of your involvement?

Being associated with CIFAR has been the most stimulating intellectual experience in my professional life. I find what I’ve learned through CIFAR to be more interesting than even genetics, my own discipline. And that is really a tribute to the broad-mindedness and adventurous spirit of CIFAR.

Being associated with CIFAR is stimulating because it opens up new avenues of thinking, and it shows the need to recognize the interconnectedness of phenomena.

You’ve been a donor for quite some time — nearly 30 years. And with many demands on your time and resources, why give to CIFAR? Why now?

Ultimately, unless we try to understand some of these questions for their own sake, we’re not going to be able to make changes in the world for the better. There are few institutions that have the boldness and ambition to even attempt what CIFAR does. I give because CIFAR’s approach is most likely to lead to a deeper understanding of the important questions we face now and that we are going to face in the future.
We express our sincere thanks to our partners and donors for helping us to address science and humanity’s most important questions.
BENEFACTORS’ CIRCLE

The Benefactors’ Circle recognizes the extraordinary philanthropic commitments of donors whose lifetime giving exceeds $1 million.

<table>
<thead>
<tr>
<th>$10,000,000 AND ABOVE</th>
<th>The Azrieli Foundation</th>
<th>Anonymous donor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5,000,000 - $9,999,999</td>
<td>RBC Foundation</td>
<td></td>
</tr>
<tr>
<td>$1,000,000 - $4,999,999</td>
<td>Arthur J.E. Child Foundation</td>
<td>Michael and Sonja Koerner</td>
</tr>
<tr>
<td></td>
<td>BMO Financial Group</td>
<td>LAC Minerals Limited</td>
</tr>
<tr>
<td></td>
<td>Canadian Pacific Limited</td>
<td>Lawson Foundation</td>
</tr>
<tr>
<td></td>
<td>CIBC</td>
<td>Manulife Financial</td>
</tr>
<tr>
<td></td>
<td>Facebook</td>
<td>Max Bell Foundation</td>
</tr>
<tr>
<td></td>
<td>General Motors</td>
<td>Margaret and Wallace McCain</td>
</tr>
<tr>
<td></td>
<td>Glencore</td>
<td>MD Robotics</td>
</tr>
<tr>
<td></td>
<td>Gerald G. Hatch</td>
<td>Bruce H. Mitchell</td>
</tr>
<tr>
<td></td>
<td>Gerald Heffernan</td>
<td>Molson Foundation</td>
</tr>
<tr>
<td></td>
<td>Henry White Kinnear Foundation</td>
<td>Power Corporation of Canada</td>
</tr>
<tr>
<td></td>
<td>Ivey Foundation</td>
<td>R. Howard Webster Foundation</td>
</tr>
<tr>
<td></td>
<td>Richard M. and Beryl Ivey</td>
<td>Scotiabank</td>
</tr>
<tr>
<td></td>
<td>Richard W. and Donna Ivey</td>
<td>The Lawrence and Judith</td>
</tr>
<tr>
<td></td>
<td>Joseph and Wolf Lebovic</td>
<td>Tanenbaum Family Foundation</td>
</tr>
<tr>
<td></td>
<td>Charitable Foundation</td>
<td>TD Bank Group</td>
</tr>
<tr>
<td></td>
<td>J.W. McConnell Family Foundation</td>
<td>Vale Inco Limited</td>
</tr>
</tbody>
</table>
SUPPORTERS

We are grateful for multi-year commitments and annual contributions made between July 1, 2019 and June 30, 2020.

Visionaries

$10,000,000 AND ABOVE
The Azrieli Foundation

$1,000,000 - $4,999,999
BMO Financial Group
Facebook
Gerald Heffernan
Joseph and Wolf Lebovic Charitable Foundation
Bruce H. Mitchell
Power Corporation of Canada

$500,000 - $999,999
RBC Foundation
The Lawrence and Judith Tanenbaum Family Foundation
Michael and Sonja Koerner
R. Howard Webster Foundation
Alfred P. Sloan Foundation
Arthur J.E. Child Foundation
Canada Life

$100,000 - $499,999
Chisholm Thomson Family Foundation
David A. Dodge
George Cedric Metcalf Charitable Foundation
Ivey Foundation
Céline and Jacques Lamarre
Nancy and Jon Love
Magna International Inc.
Manulife Financial
Max Bell Foundation

Leaders

$50,000 - $99,999
Arrell Family Foundation
Flair Foundation
The Jarislowsky Foundation
McLean Foundation
Barbara Stymiest
The Young Fund at Hamilton Community Foundation

$25,000 - $49,999
Anonymous donor
Peter Bentley
Alan Bernstein and JoAnn Breitman
BlackBerry Limited
Val and Dick Bradshaw
Olivier Desmarais

$10,000 - $49,999
Anonymous donor
Peter Bentley
Alfred P. Sloan Foundation
BlackBerry Limited
Val and Dick Bradshaw
Olivier Desmarais

Knowledge Circle

$10,000 - $24,999
Suzanne Ivey Cook
Brenda Eaton
Anthony R.M. Graham
Nancy and Richard Hamm

$10,000 - $24,999
John Abele
The Alvin and Mona Libin Foundation
Bealight Foundation

Charles Hantho and Eileen Mercier
Joan and Clifford Hatch Foundation
David and Sheryl Kerr
Gilles Ouellette
CIFAR thanks the following donors for sharing their intention to leave a Legacy gift in their will.

Lawrence Pentland and Nora Aufreiter

William L. Young and Ruth T. Dowling

Anonymous donor

$5,000 - $9,999

James C. Bailleie

Frank and Julie Barker

Bill Blundell

Pierre Boivin

Scott Bonham

Peter Bowie

Barnie and Bill Cowan

Charlie Fischer and Joanne Cuthbertson

Derek and Adrienne Fisher

Morten N. Friis

Richard F. Haskayne

Barbara L. Jackson and W. Robert Keyes in memory of E. Sydney Jackson

Trisha Jackson in memory of Syd Jackson

A. Anne McLellan

Midloch Foundation

Allan R. Taylor

Daniel Trefler

$2,000 - $4,999

Bristol Gate Capital Partners

Clairvest Group Inc.

Dominic D’Alessandro

Mark Daley

Rebecca Finlay

John Hepburn

Carol Kirsh

Claude Lamoureux

The Linda Judith Reed Foundation

John C. Madden

Mitchell Family Fund

Krishnan K. Puri

Dr. Ananth Seshan

Brian Shaw

Michael and Renae Tims

Alfred G. Wirth

Two anonymous donors

Friends

$1,000 - $1,999

Beverley Brennan

Pierre Ducros

Elizabeth Gerrits and Gordon Evans

Janet Halliwell

David H. Lairdley

Antonia Maioni

Troy and Rosalyn Manthorpe

Leslie McCary

Roger Parkinson

Dr. Howard Pentland

Catherine Riddell

Ann Rooney

Susan Schafron

Elissa Strome

Damon and Stevi Williams

Pauline Yick

$500 - $999

Craig Barlow

Michael Bregman

The Brooks Family Charitable Fund

David Hartwick

Joseph Heitman, MD, PhD

Russell Hiscock

Joan Johnston

Catherine Letendre-Perrault

Ronald E. Pearlman

Elizabeth and Hugo Sonnenschein

Two anonymous donors

UNDER $500

David Angell

Patricia A. Baird

Larissa Bezo

Shiraz and Nurjehan Bharmal

Amy Cook

Lesley Evans

Kate Geddie

Dr. Peter Glynn

Laurie Goad

Dr. David Goldbloom

Heather Gordon

Nancy Howe

Institute of Corporate Directors

Julia Jayson

Dr. Eva M. Jokay

Najat El Kouhail

Margaret Lefebvre

Robert Lewis-Watts

Jennifer Marczak

John and Eva Marczak

Gail Martin

Jennifer Mauro

Jerry Benjamin McIntosh

Lucie Mirandette

Josh Pekarsky and Marla Guralnick

Pat and Lloyd Posno

Donald Rickerd

Kelly Rubin

Carole Salah

Carol Smart

T. Ann Smiley

Michèle Thibodeau-DeGuire

Leigh Valliere

Dr. Allan A. Warrack

Marion York

Kelly Zorzi

11 anonymous donors

The Fraser Mustard Legacy Society

CIFAR thanks the following donors for sharing their intention to leave a Legacy gift in their will.

George A. Fierheller

Elizabeth Gerrits

Richard W. Ivey

Lawrence Tanenbaum
Government

Canada

<table>
<thead>
<tr>
<th>Amount Range</th>
<th>Government Name</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25,000,000 AND ABOVE</td>
<td>GOVERNMENT OF CANADA</td>
<td>Innovation, Science and Economic Development Canada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canadian Institutes of Health Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Sciences and Humanities Research Council</td>
</tr>
<tr>
<td>$2,000,000 - $9,999,999</td>
<td>GOVERNMENT OF BRITISH COLUMBIA</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td></td>
<td>GOUVERNEMENT DU QUÉBEC</td>
<td>Ministère de l’Économie et de l’Innovation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fonds de recherche du Québec – Nature et technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fonds de recherche du Québec – Santé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fonds de recherche du Québec – Société et culture</td>
</tr>
<tr>
<td>$1,000,000 - $1,999,999</td>
<td>GOVERNMENT OF ALBERTA</td>
<td>Ministry of Economic Development and Trade</td>
</tr>
<tr>
<td>$100,000 - $499,999</td>
<td>GOVERNMENT OF ONTARIO</td>
<td>Ministry of Colleges and Universities</td>
</tr>
</tbody>
</table>

International

<table>
<thead>
<tr>
<th>Government Name</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOVERNMENT OF FRANCE</td>
<td>Centre national de la recherche scientifique</td>
</tr>
<tr>
<td>GOVERNMENT OF UNITED KINGDOM</td>
<td>UK Research and Innovation</td>
</tr>
</tbody>
</table>

If you have any questions about this listing, or if your recognition wishes have changed please contact giving@cifar.ca or 416.971.4453.
Financial Overview, Selected Research Citations & Appendices
FINANCIAL OVERVIEW

Revenue

Private Sector:
- Individuals
- Foundations
- Corporations

Federal:
- Pan-Canadian AI Strategy
- Operational Funding

Expenses

- Pan-Canadian AI Strategy
- Knowledge Creation
- Knowledge Mobilization and Communications
- Governance and Administration
- Advancement
- Next Generation
Statement of Operations

Year ended June 30, 2020

Revenue

<table>
<thead>
<tr>
<th></th>
<th>2020 (000s)</th>
<th>2019 (000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOVERNMENT FUNDING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational funding</td>
<td>7,550</td>
<td>7,000</td>
</tr>
<tr>
<td>Pan-Canadian AI Strategy</td>
<td>21,792</td>
<td>22,823</td>
</tr>
<tr>
<td>Provincial</td>
<td>3,362</td>
<td>7,450</td>
</tr>
<tr>
<td>Total</td>
<td>32,704</td>
<td>37,273</td>
</tr>
<tr>
<td>PARTNERSHIPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research organizations</td>
<td>2,079</td>
<td>3,027</td>
</tr>
<tr>
<td>Universities and others</td>
<td>2</td>
<td>171</td>
</tr>
<tr>
<td>Total</td>
<td>2,081</td>
<td>3,198</td>
</tr>
<tr>
<td>PRIVATE SECTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporations</td>
<td>562</td>
<td>895</td>
</tr>
<tr>
<td>Foundations</td>
<td>3,283</td>
<td>2,941</td>
</tr>
<tr>
<td>Individuals</td>
<td>1,067</td>
<td>1,353</td>
</tr>
<tr>
<td>Total</td>
<td>4,912</td>
<td>5,189</td>
</tr>
<tr>
<td>Investment income</td>
<td>1,132</td>
<td>1,054</td>
</tr>
<tr>
<td>Total</td>
<td>40,829</td>
<td>46,714</td>
</tr>
</tbody>
</table>

Expenses

<table>
<thead>
<tr>
<th></th>
<th>2020 (000s)</th>
<th>2019 (000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM EXPENSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge creation</td>
<td>11,409</td>
<td>14,586</td>
</tr>
<tr>
<td>Pan-Canadian AI Strategy</td>
<td>22,117</td>
<td>23,460</td>
</tr>
<tr>
<td>Knowledge mobilization and communications</td>
<td>3,769</td>
<td>3,940</td>
</tr>
<tr>
<td>Next generation</td>
<td>1,381</td>
<td>1,801</td>
</tr>
<tr>
<td>Total</td>
<td>38,676</td>
<td>43,787</td>
</tr>
<tr>
<td>NON-PROGRAM EXPENSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,125</td>
<td>3,048</td>
</tr>
<tr>
<td>Total</td>
<td>40,801</td>
<td>46,835</td>
</tr>
<tr>
<td>Excess (deficiency) of revenue over expenses</td>
<td>28</td>
<td>(121)</td>
</tr>
<tr>
<td>Unrealized gain (loss) on investments</td>
<td>(1,416)</td>
<td>16</td>
</tr>
<tr>
<td>DEFICIENCY OF REVENUE OVER EXPENSES</td>
<td>(1,388)</td>
<td>(105)</td>
</tr>
</tbody>
</table>
Financial Overview

Statement of Financial Position
Year ended June 30, 2020

Assets

<table>
<thead>
<tr>
<th></th>
<th>2020 (000s)</th>
<th>2019 (000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>9,226</td>
<td>1,658</td>
</tr>
<tr>
<td>Accounts receivable</td>
<td>6,850</td>
<td>2,650</td>
</tr>
<tr>
<td>Investments</td>
<td>-</td>
<td>8,500</td>
</tr>
<tr>
<td>Prepaid expenses</td>
<td>320</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>16,396</td>
<td>13,042</td>
</tr>
<tr>
<td>Investments</td>
<td>19,099</td>
<td>19,745</td>
</tr>
<tr>
<td>Property, equipment, and leasehold improvements</td>
<td>1,273</td>
<td>1,510</td>
</tr>
<tr>
<td>Intangible assets</td>
<td>502</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>37,270</td>
<td>34,645</td>
</tr>
<tr>
<td>Liabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts payable and accrued liabilities</td>
<td>9,978</td>
<td>8,122</td>
</tr>
<tr>
<td>Deferred revenue</td>
<td>5,844</td>
<td>4,549</td>
</tr>
<tr>
<td>Deferred tenant allowance</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>15,862</td>
<td>12,711</td>
</tr>
<tr>
<td>Deferred revenue</td>
<td>1,771</td>
<td>868</td>
</tr>
<tr>
<td>Deferred tenant allowance</td>
<td>240</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>17,873</td>
<td>13,860</td>
</tr>
<tr>
<td>Net Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invested in property, equipment, leasehold improvements, and intangible assets</td>
<td>1,495</td>
<td>1,537</td>
</tr>
<tr>
<td>Externally restricted endowment fund</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Internally restricted reserve</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Unrestricted</td>
<td>7,402</td>
<td>8,748</td>
</tr>
<tr>
<td></td>
<td>19,397</td>
<td>20,785</td>
</tr>
<tr>
<td></td>
<td>37,270</td>
<td>34,645</td>
</tr>
</tbody>
</table>
SELECTED RESEARCH CITATIONS

APPENDIX

BOARD, COUNCIL, AND EXECUTIVE

Board of Directors

The Board of Directors is responsible for the overall governance of CIFAR, and is composed of distinguished individuals drawn from the business, research and professional communities.

WILLIAM L. YOUNG (Chair)
Chairman of the Board, Magna International
Boston, MA

BARBARA STYMIEST
(Immediate Past Chair)
Corporate Director
Toronto, ON

HON. ANNE M cLELLAN, PC, OC
(Vice-chair)
Senior Advisor, Bennett Jones LLP
Edmonton, AB

ANTONIA MAIONI (Vice-chair)
Dean, Faculty of Arts, McGill University
Montreal, QC

ALAN BERNSTEIN, OC, OOnt, PhD, FRSC/MSRC
President & CEO, CIFAR
Toronto, ON

SCOTT BONHAM
Co-Founder, Intentional Capital Real Estate
San Francisco, CA

JEAN-GUY DESJARDINS, CM
Chairman & CEO, Fiera Capital Corporation
Montreal, QC

OLIVIER DESMARAI
Senior Vice-President, Power Corporation of Canada
Montreal, QC

JASON McLEAN
President & CEO, McLean Group
Vancouver, BC

PATRICIA MEREDITH
Clarkson Centre for Board Effectiveness, University of Toronto
Toronto, ON

GILLES OUELLETTE
Chairman, BMO Global Asset Management
Toronto, ON

LAWRENCE PENTLAND
Former President, Dell Canada and Latin America
Toronto, ON

ANN ROONEY
Corporate Director
Calgary, AB

HUGO SONNENSCHEIN
President Emeritus & Distinguished Professor, University of Chicago
Chicago, IL

DAMON WILLIAMS
CEO, RBC Global Asset Management
Toronto, ON

Executive Team

CIFAR is led by Alan Bernstein, President & Chief Executive Officer, who reports to the Board and is responsible for developing and leading our overall strategic direction. Reporting to the President & CEO is the executive team.

DR. ALAN BERNSTEIN, OC, OOnt, PhD, FRSC/MSRC
President & CEO

REBECCA FINLAY
Vice-President, Engagement & Public Policy

DR. JOHN HEPBURN, PhD
Vice-President, Research (to March 2020)

LESLIE McCARLEY
Vice-President, Advancement

CATHERINE RIDDELL
Vice-President, Strategic Communications

DR. ELISSA STROME, PhD
Associate Vice-President, Research and Executive Director, Pan-Canadian AI Strategy

PAULINE YICK
Chief Operating Officer
President’s Research Council

The President’s Research Council is made up of eminent scholars from a wide range of disciplines. It is responsible for advising the President & Chief Executive Officer on formulating, developing and establishing high quality advanced research programs, and on the closure of programs when their work as a CIFAR program is deemed to be complete.

ALAN BERNSTEIN, OC, OOnt, PhD, FRSC/MSRC
President & CEO, CIFAR
Toronto, ON

FRANCIS BACH
Professor, Computer Science
Department, École Normale Supérieure, INRIA
Paris, France

STEVEN BECKWITH
Professor, Department of Astronomy,
University of California, Berkeley
Berkeley, CA

SUZANNE BERGER
John M. Deutch Institute Professor,
Department of Political Science,
Massachusetts Institute of Technology
Cambridge, MA

ELIZABETH CANNON, OC
President Emerita and Professor
of Geomatics Engineering,
University of Calgary
Calgary, AB

SOPHIE D’AMOURS, OC
Rectrice, Université Laval
Laval, QC

DAME KAY DAVIES, DBE
Dr. Lee’s Professor of Anatomy and
Director, MRC Functional Genomics
Unit, University of Oxford
Oxford, UK

DONALD DINGWELL
Director, Department for Earth and
Environmental Sciences, Ludwig-Maximilians-Universität München
Munich, Germany

NITA A. FARAHANY
Professor of Law and Philosophy,
Duke University
Durham, NC

MARIE-JOSÉE HÉBERT
Vice-rectrice à la recherche, à la découverte, à la création et à l’innovation, Université de Montréal
Montreal, QC

MARGARET LEVI
Sara Miller McCune Director, Center for Advanced Study in the Behavioral Sciences, Stanford University
Stanford, CA

ANTONIA MAIONI
Dean, Faculty of Arts,
McGill University
Montreal, QC

ANNE MARTIN-MATTHEWS, OC
Professor of Sociology and Associate Vice-President, Health, University of British Columbia
Vancouver, BC

ANDREW MAYNARD
Director, Risk Innovation Lab, School for the Future of Innovation in Society,
Arizona State University
Tempe, AZ

ANTOINE PETIT
Chairman & CEO, National Center for Scientific Research (CNRS)
Paris, France

JOHN PRESKILL
Richard P. Feynman Professor of Theoretical Physics, California Institute of Technology
Pasadena, CA

RÉMI QUIRION, OC
Scientifique en chef, Gouvernement du Québec
Montreal, QC

MATTHIAS RUTH
Pro-Vice-Chancellor for Research, University of York
York, UK

THOMAS SUGRUE
Professor of Social and Cultural Analysis and History,
New York University
New York City, NY

D. LORNE TYRRELL, OC
Distinguished University Professor and GSK Chair in Virology,
University of Alberta
Edmonton, AB

Council of Advisors

The Council of Advisors assists the Board of Directors and the President & CEO by providing advice and counsel as requested. It is composed of engaged alumni of the Board of Directors, of the Research Council, or past participants in research programs.

PETER ALLEN
President, Mercator Investments Ltd.
Toronto, ON

JAMES BAILLIE
Former Senior Counsel, Torys LLP
Toronto, ON

PATRICIA BAIRD, OC
University Killam Distinguished Professor Emerita, University of British Columbia
Vancouver, BC

PETER BENTLEY
Director & Chairman Emeritus, Canfor Corporation
Vancouver, BC

WILLIAM BLUNDELL, OC
Corporate Director
Toronto, ON

EVAN CHRAPKO
Chairman & CEO, Trust Science
Edmonton, AB

PIERRE DUCROS
President, P. Ducros & Associates
Westmount, QC

JOHN FERGUSON, CM
Founder, Chairman & CEO,
Princeton Developments Ltd.
Edmonton, AB

JAMES FLECK, CC
President, Fleck Management Services Ltd.
Toronto, ON

PIERRE FORTIN
Professor Emeritus, Department of Economics, Université du Québec à Montréal
Montréal, QC
APPENDIX

MORTEN FRIIS
Corporate Director
Toronto, ON

J. LINDSAY GORDON
Former Chancellor, University of
British Columbia
Vancouver, BC

MAXINE GRANOFSKY GLUSKIN
Trustee, Ira Gluskin and Maxine
Granovsky Gluskin Charitable
Foundation

JACQUES LAMARRE, OC
Strategic Advisor, Jacques Lamarre
Management Inc.
Montréal, QC

CLAUE LAMBOUREX, OC
Past President & CEO, Ontario
Teachers’ Pension Plan
Toronto, ON

MARGARET McCAIN, CC
Former Lieutenant Governor of
New Brunswick
Toronto, ON

MARTHA PIPER, OC
Past President & Vice-Chancellor,
University of British Columbia
Vancouver, BC

The Directors Emeriti is an honorary group of former long-standing Board
members. They are friends of CIFAR, who have chosen to stay involved with
the organization to provide intellectual insight and strategic advice.

ROBIN ARMSTRONG
PATRICIA BAIRD, OC
RALPH BARFORD, CM
PETER BENTLEY, OC
WILLIAM BLUNDELL, OC
BEVERLY BRENNA
BRIAN CANFIELD, CM
DAVID CHOI
EVAN CHRAPKO
ANTHONY COMPER, CM
ALLAN CRAWFORD
MICHAEL DECTER
ROBERT DEXTER
JAMES DINNING, CM
BRUNO DUCHARME
PIERRE DUCROS, CM
HAIG FARRIS
PETER FARWELL
ANTHONY FELL
JOHN FERGUSON, CM
BRIAN FLEMMING
CLAUE FOGGET, OC
PIERRE FORTIN

MORTEN FRIIS
KENNETH GEORGETTI, CM
IRVING GERSTEIN, CM
CHARLES GOLD
J. LINDSAY GORDON
MAXINE GRANOFSKY GLUSKIN
GERALD HEFFERNAN, OC
CHAIVKA HOŠEK, OC
RICHARD IVEY, CM
RIGHT HON. DAVID JOHNSTON, CC
MAUREEN KEMPSTON
THOMAS KIERANS
JACQUES LAMARRE, OC
CLAUE LAMBOUREX, OC
ARTHUR LAU
V. PAUL LEE
MARTIN LIPPERT
PETER MAURO, OC
ARTHUR MAURO, OC
TRINA McQUEEN, OC
BRUCE MITCHELL
PETER NICHOLSON

FRANK O’DEA
ROGER PARKINSON
MARTHA PIPER, OC
FRED POMEROY
GERARD PROTTI
BARBARA RAE
HON. ROBERT RAE, PC, CC
RAYMOND ROYER, OC
GUILLAINE SAUCIER
ARTHUR SAWCHUK
HUGH SEGAL, CM
HELEN SINCLAIR
HON. BARBARA SPARROW, PC
ANDREI SUZENKO
ALLAN TAYLOR, OC
CAROLE TAYLOR
HON. PAUL TELLIER, PC, CC
STEPHEN TOOPE, OC
ILSE TREVUNNICH
NORMAN WEBSTER
CHARLES WILLIAMS
LYNTON WILSON, OC
CIFAR Pan-Canadian AI Strategy National Program Committee

DOINA PRECUP (Chair)
Associate Professor of Computer Science, McGill University;
Canada CIFAR AI Chair; CIFAR Fellow, Learning in Machines & Brains; Faculty Member, Mila Montreal, QC

MICHAEL BOWLING
Professor of Computing Science, University of Alberta;
Faculty Member, Amii Edmonton, AB

GARTH GIBSON
President & CEO, Vector Institute Toronto, ON

RANDY GOEBEL
Professor of Computing Science, University of Alberta;
Faculty Member, Amii Edmonton, AB

ROGER GROSSE
Assistant Professor of Computer Science, University of Toronto;
Canada CIFAR AI Chair; Faculty Member, Vector Institute Toronto, ON

GREG MORI
Professor of Computing Science, Simon Fraser University;
Research Director, Borealis AI Vancouver Vancouver, BC

VALÉRIE PISANO
President and CEO, Mila Montreal, QC

ELISSA STROME
Associate Vice-President Research and Executive Director, Pan-Canadian AI Strategy, CIFAR Toronto, ON

PETER VAN BEEK
Professor of Computer Science, Co-Director Waterloo AI Institute, University of Waterloo Waterloo, ON

International Scientific Advisory Committee, Pan-Canadian AI Strategy

SHIRLEY TILGHMAN, OC (Chair)
President Emerita, Princeton University Princeton, NJ

JENNIFER CHAYES
Associate Provost, Division of Computing, Data Science, and Society, University of California, Berkeley; Dean, School of Information, University of California, Berkeley Berkeley, CA

YANN LeCUN
Co-Director, CIFAR Learning in Machines & Brains program; Chief AI Scientist, Facebook; Professor, New York University New York City, NY

ANTOINE PETIT
Member, CIFAR Research Council; Chairman & CEO, National Center for Scientific Research (CNRS) Paris, France

SEBASTIAN SEUNG
Advisor, CIFAR Learning in Machines & Brains program; Evnin Professor in Neuroscience, Professor of Computer Science, Princeton Neuroscience Institute; President, Samsung Research Seoul, South Korea

MAX WELLING
CIFAR Fellow, Learning in Machines & Brains Program; Vice-President, Technologies, Qualcomm; Research Chair in Machine Learning, University of Amsterdam Amsterdam, Netherlands
Fellows, Advisors, and CIFAR Azrieli Global Scholars

Azrieli Program in Brain, Mind & Consciousness

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fellows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIM BAYNE</td>
<td>(Monash University, Australia) Fellow</td>
<td></td>
</tr>
<tr>
<td>AXEL CLEEREMANS</td>
<td>(Université libre de Bruxelles, Belgium) Fellow</td>
<td></td>
</tr>
<tr>
<td>STANISLAS DEHAENE</td>
<td>(INSERM-CEA, France) Fellow</td>
<td></td>
</tr>
<tr>
<td>DANIEL DENNETT</td>
<td>(Tufts University, United States) Advisor</td>
<td></td>
</tr>
<tr>
<td>MELVYN GOODALE</td>
<td>(Western University, Canada) Program Director</td>
<td></td>
</tr>
<tr>
<td>ATSUSHI IRIKI</td>
<td>(RIKEN, Japan) Fellow</td>
<td></td>
</tr>
<tr>
<td>SHEENA JOSSELYN</td>
<td>(The Hospital for Sick Children, Canada) Fellow</td>
<td></td>
</tr>
<tr>
<td>NANCY KANWISHER</td>
<td>(Massachusetts Institute of Technology, United States) Advisor</td>
<td></td>
</tr>
<tr>
<td>ROBERT KENTRIDGE</td>
<td>(Durham University, United Kingdom) Fellow</td>
<td></td>
</tr>
<tr>
<td>SID KOUIDER</td>
<td>(École normale supérieure, France) Fellow</td>
<td></td>
</tr>
<tr>
<td>RAFAEL MALACH</td>
<td>(Weizmann Institute of Science, Israel) Tanenbaum Fellow</td>
<td></td>
</tr>
<tr>
<td>MARCELLO MASSIMINI</td>
<td>(University of Milan, Italy) Fellow</td>
<td></td>
</tr>
<tr>
<td>JASON MATTINGLEY</td>
<td>(The University of Queensland, Australia) Fellow</td>
<td></td>
</tr>
<tr>
<td>DAVID MENON</td>
<td>(University of Cambridge, United Kingdom) Advisor</td>
<td></td>
</tr>
<tr>
<td>ADRIAN OWEN</td>
<td>(Western University, Canada) Koerner Fellow & Program Director</td>
<td></td>
</tr>
<tr>
<td>ANIRUDDH PATEL</td>
<td>(Tufts University, United States) Fellow</td>
<td></td>
</tr>
<tr>
<td>ISABELLE PERETZ</td>
<td>(Université de Montréal, Canada) Associate Fellow</td>
<td></td>
</tr>
<tr>
<td>MEGAN PETERS</td>
<td>(University of California, Irvine, United States) CIFAR Azrieli Global Scholar</td>
<td></td>
</tr>
<tr>
<td>LISA SAKSIDA</td>
<td>(Western University, Canada) Fellow</td>
<td></td>
</tr>
<tr>
<td>ANIL SETH</td>
<td>(University of Sussex, United Kingdom) Program Director</td>
<td></td>
</tr>
<tr>
<td>JOSHUA SHEPHERD</td>
<td>(Carleton University, Canada) CIFAR Azrieli Global Scholar</td>
<td></td>
</tr>
<tr>
<td>DAVID SHERRY</td>
<td>(Western University, Canada) Advisor</td>
<td></td>
</tr>
<tr>
<td>CATHERINE TALLON-BAUDRY</td>
<td>(Ecole normale supérieure, France) Fellow</td>
<td></td>
</tr>
<tr>
<td>LAUREL TRAINOR</td>
<td>(McMaster University, Canada) Fellow</td>
<td></td>
</tr>
<tr>
<td>NICHOLAS TURK-BROWNE</td>
<td>(Yale University, United States) Fellow</td>
<td></td>
</tr>
<tr>
<td>LUCINA UDDIN</td>
<td>(University of Miami, United States) CIFAR Azrieli Global Scholar</td>
<td></td>
</tr>
<tr>
<td>FILIP VAN OPSTAL</td>
<td>(University of Amsterdam, Netherlands) CIFAR Azrieli Global Scholar</td>
<td></td>
</tr>
<tr>
<td>SANDRA WAXMAN</td>
<td>(Northwestern University, United States) Associate Fellow</td>
<td></td>
</tr>
<tr>
<td>JANET WERKER</td>
<td>(University of British Columbia, Canada) Advisory Committee Chair</td>
<td></td>
</tr>
<tr>
<td>ROBERT ZATORRE</td>
<td>(McGill University, Canada) Fellow</td>
<td></td>
</tr>
<tr>
<td>YANIV ZIV</td>
<td>(Weizmann Institute of Science, Israel) CIFAR Azrieli Global Scholar</td>
<td></td>
</tr>
</tbody>
</table>

Advisors		
ROBERT KENTRIDGE	(Durham University, United Kingdom) Fellow	
CATHERINE TALLON-BAUDRY	(Ecole normale supérieure, France) Fellow	
ROBERT ZATORRE	(McGill University, Canada) Fellow	
JANET WERKER	(University of British Columbia, Canada) Advisory Committee Chair	
Bio-inspired Solar Energy

FRASER ARMSTRONG
(University of Oxford, United Kingdom)
Advisor

ALÁN ASPURU-GUZIK
(University of Toronto, Canada)
Lebovic Fellow

CURTIS BERLINGUETTE
(University of British Columbia, Canada)
Program Director

CHRISTOPHER CHANG
(University of California, Berkeley, United States)
Fellow

RICHARD COGDELL
(University of Glasgow, United Kingdom)
Advisory Committee Chair

CATHERINE DRENNAN
(Massachusetts Institute of Technology, United States)
Fellow

SHARON HAMMES-SCHIFFER
(Yale University, United States)
Fellow

XIMIN HE
(University of California, Los Angeles, United States)
CIFAR Azrieli Global Scholar

OSAMU ISHITANI
(Tokyo Institute of Technology, Japan)
Advisor

SHAFFIQ JAFFER
(Total American Services, United States)
Advisor

MARIO LECLERC
(Université Laval, Canada)
Fellow

KARL LEO
(Technische Universität Dresden, Germany)
Fellow

THOMAS MALLOUK
(University of Pennsylvania, United States)
Fellow

PRINEHA NARANG
(University of Pennsylvania, United States)
CIFAR Azrieli Global Scholar

GABRIELA SCHLAU-COHEN
(Massachusetts Institute of Technology, United States)
Associate Director

GREG SCHOLES
(Princeton University, United States)
Program Director

YOGESH SURENDRANATH
(Massachusetts Institute of Technology, United States)
CIFAR Azrieli Global Scholar

RIENK VAN GRONDELLE
(Vrije Universiteit Amsterdam, Netherlands)
Fellow

ALEKSANDRA VOJVODIC
(University of Pennsylvania, United States)
Fellow

HAOTIAN WANG
(Rice University, United States)
CIFAR Azrieli Global Scholar

VIVIAN WING-WAH YAM
(University of Hong Kong, China)
Advisor

JENNY YANG
(University of California, Irvine, United States)
CIFAR Azrieli Global Scholar

PEIDONG YANG
(University of California, Berkeley, United States)
Fellow

Boundaries, Membership & Belonging

YASMEEN ABU-LABAN
(University of Alberta, Canada)
Fellow

KEITH BANTING
(Queen’s University, Canada)
Advisor

IRENE BLOEMRAAD
(University of California, Berkeley, United States)
Program Director

FREDERICK COOPER
(New York University, United States)
Fellow

CATHERINE DAUVERGNE
(University of British Columbia, Canada)
Advisor

VICTORIA ESSES
(Western University, Canada)
Fellow

ALLISON HARELL
(Université du Québec à Montréal, Canada)
Fellow

WILL KYMLICKA
(Queen’s University, Canada)
Program Director

EVAN LIEBERMAN
(Massachusetts Institute of Technology, United States)
Fellow

AUDREY MACKLIN
(University of Toronto, Canada)
Fellow

HAZEL MARKUS
(Stanford University, United States)
Advisor

NATHAN NUNN
(Harvard University, United States)
Fellow

VIJAYENDRA RAO
(World Bank, United States)
Advisory Committee Chair

STEPHEN REICHER
(University of St. Andrews, United Kingdom)
Fellow

AYELET SHACHAR
(University of Toronto, Canada)
Advisor

PRERNA SINGH
(Brown University, United States)
Fellow

ANDREAS WIMMER
(Columbia University, United States)
Fellow
APPENDIX

Child & Brain Development

DANIEL ANSARI
(University of Western Ontario, Canada)
Fellow

DANIEL BELSKY
(Columbia University, United States)
Fellow

ELISABETH BINDER
(Max Planck Institute of Psychiatry, Germany)
Advisory Committee Chair

W. THOMAS BOYCE
(University of California, San Francisco, United States)
Advisor

AMI CITRI
(The Hebrew University of Jerusalem, Israel)
Fellow

DAVID CLAYTON
(Queen Mary University of London, United Kingdom)
Fellow

BRIAN DIAS
(Emory University, United States)
Fellow

PAUL FRANKLAND
(The Hospital for Sick Children, Canada)
Fellow

ANNA GOLDENBERG
(The Hospital for Sick Children, Canada)
Fellow

MEGAN GUNNAR
(University of Minnesota, United States)
Fellow

TAKAO HENSCH
(Harvard University, United States)
Program Director

DANIELA KAUFER
(University of California, Berkeley, United States)
Fellow

MICHAEL KOBOR
(University of British Columbia, Canada)
Fellow

BRYAN KOLB
(University of Lethbridge, Canada)
Fellow

JOEL LEVINE
(University of Toronto, Canada)
Fellow

ULMAN LINDENBERGER
(Max Planck Institute for Human Development, Germany)
Fellow

THOM McDADE
(Northwestern University, United States)
Fellow

MICHAEL MEANEY
(McGill University, Canada)
Fellow

SARA MOSTAFAVI
(University of British Columbia, Canada)
Fellow

CHARLES NELSON
(University of Toronto, Canada)
Fellow

CANDICE OGDERS
(University of California, Irvine, United States)
Program Director

GENE ROBINSON
(University of Illinois at Urbana-Champaign, United States)
Fellow

MARLA SOKOLOWSKI
(University of Toronto, Canada)
Fellow

JENNY TUNG
(Duke University, United States)
Fellow

Earth 4D: Subsurface Science & Exploration

JAN AMEND
(University of Southern California, United States)
Fellow

CHRISTOPHER BALLENTINE
(University of Oxford, United Kingdom)
Fellow

HEATHER GRAHAM
(National Aeronautics and Space Administration, United States)
Fellow

FUMIO INAGAKI
(Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan)
Fellow

JEFFREY McDONNELL
(University of Saskatchewan, Canada)
Fellow

JENNIFER McINTOSH
(University of Arizona, United States)
Fellow

BÉNÉDICTE MÉNEZ
(Institut de physique du globe de Paris, France)
Fellow

JOSEPH MICHALSKI
(University of Hong Kong, China)
Fellow

JOHN MUSTARD
(Brown University, United States)
Fellow

VICTORIA ORPHAN
(California Institute of Technology, United States)
Fellow

MAGDALENA OSBURN
(Northwestern University, United States)
Fellow

BARBARA SHERWOOD LOLLAR
(University of Toronto, Canada)
Fellow

NIGEL SMITH
(University of Toronto, Canada)
Fellow

VLADA STAMENKOVIĆ
(National Aeronautics and Space Administration, United States)
Fellow
Fungal Kingdom: Threats & Opportunities

DAVID BLEHERT
(United States Geological Survey, United States)
Fellow

CHARLES BOONE
(University of Toronto, Canada)
Fellow

ARTURO CASADEVALL
(Johns Hopkins University, United States)
Advisory Committee Chair

LEAH COWEN
(University of Toronto, Canada)
Program Director

CHRISTINA CUOMO
(Broad Institute, United States)
Fellow

DAVID DENNING
(The University of Manchester, United Kingdom)
Advisor

MATTHEW FISHER
(Imperial College London, United Kingdom)
Fellow

NEIL GOW
(University of Exeter, United Kingdom)
Advisor

SARAH GURR
(University of Exeter, United Kingdom)
Fellow

JOSEPH HEITMAN
(Duke University, United States)
Program Director

HAILING JIN
(University of California, Riverside, United States)
Fellow

REGINE KAHMANN
(Max Planck Institute for Terrestrial Microbiology, Germany)
Advisor

BRUCE KLEIN
(University of Wisconsin-Madison, United States)
Fellow

JAMES KRONSTAD
(University of British Columbia, Canada)
Fellow

DON SHEPPARD
(McGill University, Canada)
Fellow

JASON STAICH
(University of California, Riverside, United States)
Fellow

EVA STUKENBROCK
(Max Planck Institute of Evolutionary Biology, Germany)
Fellow

JOHN TAYLOR
(University of California, Berkeley, United States)
Advisor

GERARD WRIGHT
(McMaster University, Canada)
Fellow

Genetic Networks

BRENDA ANDREWS
(University of Toronto, Canada)
Fellow

DAVID BOTSTEIN
(California Life Company, United States)
Advisory Committee Chair

MAITREYA DUNHAM
(University of Washington, United States)
Fellow

ANDREW FRASER
(University of Toronto, Canada)
Fellow

BRENDAN FREY
(University of Toronto, Canada)
Fellow

PHILIP HIETER
(University of British Columbia, Canada)
Fellow

TIMOTHY HUGHES
(University of Toronto, Canada)
Fellow

JASON MOFFAT
(University of Toronto, Canada)
Fellow

CHAD MYERS
(University of Minnesota, United States)
Fellow

FREDERICK ROTH
(University of Toronto, Canada)
Program Director

STEPHEN SCHERER
(The Hospital for Sick Children, Canada)
Fellow

OLGA TROYANSKAYA
(Princeton University, United States)
Fellow

ROBERT WATERSTON
(University of Washington, United States)
Advisor
Gravity & the
Extreme Universe

IAIR ARCAVI
(Tel Aviv University, Israel)
CIFAR Azrieli Global Scholar

LARS BILDSTEN
(University of California, Santa
Barbara, United States)
Associate Fellow

ROGER BLANDFORD
(Stanford University, United States)
Advisor

J. RICHARD BOND
(University of Toronto, Canada)
Fellow

SARAH BURKE-SPOLAOR
(West Virginia University, United States)
CIFAR Azrieli Global Scholar

MARK CHEN
(University's University, Canada)
Fellow

MATTHEW CHOPTUIK
(University of British Columbia, Canada)
Associate Fellow

MATT DOBBS
(McGill University, Canada)
Fellow

MARIA DROUT
(University of Toronto, Canada)
CIFAR Azrieli Global Scholar

RICHARD ELLIS
(University College London, United Kingdom)
Associate Fellow

GABRIELA GONZÁLEZ
(Louisiana State University, United States)
Advisor

MARK HALPERN
(University of British Columbia, Canada)
Fellow

GARY HINSHAW
(University of British Columbia, Canada)
Fellow

RENÉE HLOŽEK
(University of Toronto, Canada)
CIFAR Azrieli Global Scholar

GILBERT HOLDER
(University of Illinois at Urbana-
Champaign, United States)
Fellow

VASILIKI KALOGERA
(Northwestern University, United States)
Fellow

VICTORIA KASPI
(McGill University, Canada)
Program Director & R. Howard
Webster Foundation Fellow

JUNA KOLLMIIER
(Carnegie Institution for Science, United States)
Fellow

LUIS LEHNER
(University of Waterloo, Canada)
Fellow

ADRIAN LIU
(McGill University, Canada)
CIFAR Azrieli Global Scholar

RAFFAELLA MARGUTTI
(Northwestern University, United States)
CIFAR Azrieli Global Scholar

ARTHUR MCDONALD
(University of Victoria, Canada)
Associate Fellow

ROBERT MYERS
(Perimeter Institute for Theoretical
Physics, Canada)
Associate Fellow

JULIO NAVARRO
(University of Victoria, Canada)
Fellow

BARTH NETTERFIELD
(University of Toronto, Canada)
Fellow

LYMAN PAGE
(Princeton University, United States)
Advisor

JOHN PEACOCK
(The University of Edinburgh, United Kingdom)
Associate Fellow

UE-LI PEN
(University of Toronto, Canada)
Fellow

HARALD PFEIFFER
(University of Toronto, Canada)
Associate Fellow

E. STERL PHINNEY
(California Institute of Technology, United States)
Associate Fellow

FRANS PRETORIUS
(Princeton University, United States)
Fellow

SCOTT RANSOM
(National Radio Astronomy Observatory, United States)
Fellow

JOSEPH SILK
(Johns Hopkins University, United States)
Associate Fellow

EVA SILVERSTEIN
(Stanford University, United States)
Advisor

KENDRICK SMITH
(Perimeter Institute for Theoretical Physics, Canada)
Fellow

DAVID SPERGEL
(Princeton University, United States)
Associate Fellow

INGRID STAIRS
(University of British Columbia, Canada)
Fellow

SCOTT TREMAINE
(Institute for Advanced Study, United States)
Advisory Committee Chair

NEIL TUROK
(Perimeter Institute for Theoretical Physics, Canada)
Associate Fellow

WILLIAM UNRUH
(University of British Columbia, Canada)
Associate Fellow

SIMON WHITE
(Max Planck Institute for Astrophysics, Germany)
Advisor

MATIAS ZALDARRIAGA
(Institute for Advanced Study, United States)
Fellow
Humans & the Microbiome

KATHERINE AMATO
(Northwestern University, United States)
Fellow

MEGHAN AZAD
(University of Manitoba, Canada)
Fellow

MARTIN BLASER
(Rutgers University, United States)
Interim Advisory Committee Chair & Advisor

THOMAS BOSCH
(Kiel University, Germany)
Fellow

HIUTUNG CHU
(University of California, San Diego, United States)
CIFAR Azrieli Global Scholar

MARIA GLORIA DOMINGUEZ-BELLO
(Rutgers University, United States)
Fellow

STANISLAV DUSKO EHRlich
(King’s College London, United Kingdom)
Advisor

ERAN ELINAV
(Weizmann Institute of Science, Israel)
Fellow

BRETT FINLAY
(University of British Columbia, Canada)
Program Director

NAAMA GEVA-ZATORSKY
(Technion, Israel)
CIFAR Azrieli Global Scholar

TAMARA GILES-VERNICK
(Institut Pasteur, France)
Fellow

PHILIPPE GROS
(McGill University, Canada)
Fellow

KAREN GUilleMIN
(University of Oregon, United States)
Fellow

FRÉDÉRIC KECK
(CNRS, France)
Fellow

TAL KOREM
(Columbia University, United States)
CIFAR Azrieli Global Scholar

MARGARET McFALL-NGAI
(University of Hawaii at Manoa, United States)
Advisor Committee Chair

MELISSA MELBY
(University of Delaware, United States)
Program Director

JESSICA METCALF
(Colorado State University, United States)
CIFAR Azrieli Global Scholar

MARK NICHTER
(University of Arizona, United States)
Advisor

SVEN PETTERSSON
(Nanyang Technological University of Singapore, Singapore)
Fellow

HENDRIK POINAR
(McMaster University, Canada)
Fellow

TOBIAS REES
(Berggruen Institute, United States)
Fellow

CAROLINA TROPINI
(University of British Columbia, Canada)
CIFAR Azrieli Global Scholar

LIPING ZHAO
(Rutgers University, United States)
Fellow

Innovation, Equity & the Future of Prosperity

YOCHAI BENKLER
(Harvard University, United States)
Fellow

SUZANNE BERGER
(Massachusetts Institute of Technology, United States)
Advisor

DAN BREZNITZ
(University of Toronto, Canada)
Program Director

J. BRADFORD DELONG
(University of California, Berkeley, United States)
Advisor

ALDO GEUNA
(Università degli Studi di Torino, Italy)
Fellow

JANE GINGRICH
(University of Oxford, United Kingdom)
Fellow

RAY GOSINE
(Memorial University, Canada)
Fellow

SUSAN HELPER
(Case Western Reserve University, United States)
Program Director

WILLIAM LAZONICK
(University of Massachusetts Lowell, United States)
Fellow

KEUN LEE
(Seoul National University, South Korea)
Fellow

KENNETH LIPARTITO
(Florida International University, United States)
Fellow

GOLDIE NEJAT
(University of Toronto, Canada)
Fellow

WOODY POWELL
(Stanford University, United States)
Advisor

ANDREW SCHRANK
(Brown University, United States)
Fellow

MANUEL TRAJTENBERG
(Tel Aviv University, Israel)
Advisor

AMOS ZEHAVI
(Tel Aviv University, Israel)
Associate Director
Institutions, Organizations & Growth

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution & Country</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARON ACEMOGLU</td>
<td>Massachusetts Institute of Technology, United States</td>
<td>Fellow</td>
</tr>
<tr>
<td>PHILIPPE AGHION</td>
<td>Collège de France, France</td>
<td>Fellow</td>
</tr>
<tr>
<td>GEORGE AKERLOF</td>
<td>Georgetown University, United States</td>
<td>Fellow</td>
</tr>
<tr>
<td>SIWAN ANDERSON</td>
<td>University of British Columbia, Canada</td>
<td>Fellow</td>
</tr>
<tr>
<td>MELISSA DELL</td>
<td>Harvard University, United States</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>DANIEL DIERMEIER</td>
<td>University of Chicago, United States</td>
<td>Fellow</td>
</tr>
<tr>
<td>MAURICIO DRELICHMAN</td>
<td>University of British Columbia, Canada</td>
<td>Fellow</td>
</tr>
<tr>
<td>JAMES FEARON</td>
<td>Stanford University, United States</td>
<td>Fellow</td>
</tr>
<tr>
<td>PATRICK FRANÇOIS</td>
<td>University of British Columbia, Canada</td>
<td>Fellow</td>
</tr>
<tr>
<td>THOMAS FUJIWARA</td>
<td>Princeton University, United States</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>AVNER GREIF</td>
<td>Stanford University, United States</td>
<td>Fellow</td>
</tr>
<tr>
<td>ELHANAN HELPMAN</td>
<td>Harvard University, United States</td>
<td>Fellow</td>
</tr>
<tr>
<td>JOSEPH HENRICH</td>
<td>Harvard University, United States</td>
<td>Fellow</td>
</tr>
<tr>
<td>KIM HILL</td>
<td>Arizona State University, United States</td>
<td>Fellow</td>
</tr>
<tr>
<td>KYUNGHYUN CHO</td>
<td>New York University, United States</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>AARON COURVILLE</td>
<td>Université de Montréal, Canada</td>
<td>Fellow</td>
</tr>
<tr>
<td>NANDO DE FREITAS</td>
<td>University of Oxford, United Kingdom</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>EMMANUEL DUPOUX</td>
<td>École des hautes études en sciences sociales, France</td>
<td>Fellow</td>
</tr>
</tbody>
</table>
Molecular Architecture of Life

ROBERT AUSTIN
(Princeton University, United States)
Advisor

WOLFGANG BAUMEISTER
(Max Planck Institute of Biochemistry, Germany)
Fellow

MICHIEL BOUVIER
(Université de Montréal, Canada)
Fellow

OLIVIER ERNST
(University of Toronto, Canada)
Program Director

DANIEL FIGEYS
(University of Ottawa, Canada)
Fellow

SIHYUN HAM
(Sookmyung Women’s University, South Korea)
Fellow

JEAN-PHILIPPE JULIEN
(The Hospital for Sick Children, Canada)
CIFAR Azrieli Global Scholar

LEWIS KAY
(University of Toronto, Canada)
Fellow

BRIAN KOBILKA
(Stanford University, United States)
Advisor

MING LEI
(Shanghai Institute of Precision Medicine, China)
Fellow

RACHEL MARTIN
(University of California, Irvine, United States)
Fellow

R. J. DWAYNE MILLER
(University of Toronto, Canada)
Program Director

KRZYSZTOF PALCZEWSKI
(University of California, Irvine, United States)
Fellow

DAME CAROL ROBINSON
(University of Oxford, United Kingdom)
Fellow

DAVID STUART
(University of Oxford, United Kingdom)
Advisory Committee Chair

JOHN VEDERAS
(University of Alberta, Canada)
Fellow

YUE WAN
(Genome Institute of Singapore, Singapore)
CIFAR Azrieli Global Scholar

PAUL WISEMAN
(McGill University, Canada)
Fellow

HYUN YOUK
(Delft University of Technology, Netherlands)
CIFAR Azrieli Global Scholar

JENNIFER ZENKER
(Monash University, Australia)
CIFAR Azrieli Global Scholar

WEI ZHANG
(University of Guelph, Canada)
CIFAR Azrieli Global Scholar

AAPO HYVÄRINEN
(University of Helsinki, Finland)
Fellow

JOELLE PINEAU
(McGill University, Canada)
Advisor

DOINA PRECUS
(McGill University, Canada)
Fellow

BLAKE RICHARDS
(McGill University, Canada)
Fellow

BERNHARD SCHÖLKOPF
(Max Planck Institute for Intelligent Systems, Germany)
Fellow

SEBASTIAN SEUNG
(Princeton University, United States)
Advisory Committee Chair

RICHARD SUTTON
(University of Alberta, Canada)
Associate Fellow

RAQUEL URTASUN
(University of Toronto, Canada)
Fellow

PASCAL VINCENT
(Université de Montréal, Canada)
Associate Fellow

MAX WELLING
(University of Amsterdam, Netherlands)
Fellow

CHRISTOPHER WILLIAMS
(The University of Edinburgh, United Kingdom)
Advisor

RICHARD ZEMEL
(University of Toronto, Canada)
Associate Fellow

JOEL ZYLBERBERG
(York University, Canada)
Associate Fellow
Quantum Information Science

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>DORIT AHRONOV</td>
<td>(The Hebrew University of Jerusalem, Israel)</td>
<td>Advisor</td>
</tr>
<tr>
<td>DAVID BACON</td>
<td>(Google, United States)</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>ALEXANDRE BLAIS</td>
<td>(Université de Sherbrooke, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>GILLES BRASSARD</td>
<td>(Université de Montréal, Canada)</td>
<td>Advisor</td>
</tr>
<tr>
<td>LILIAN CHILDRESS</td>
<td>(McGill University, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>MICHEL DEVORET</td>
<td>(Yale University, United States)</td>
<td>Advisor</td>
</tr>
<tr>
<td>JAY GAMBETTA</td>
<td>(IBM T.J. Watson Research Center, United States)</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>DAVID GOSSLET</td>
<td>(University of Waterloo, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>MATTHEW HASTINGS</td>
<td>(Microsoft, United States)</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>PATRICK HAYDEN</td>
<td>(Stanford University, United States)</td>
<td>Fellow</td>
</tr>
<tr>
<td>STACEY JEFFERY</td>
<td>(Centrum Wiskunde & Informatica, Netherlands)</td>
<td>Fellow</td>
</tr>
<tr>
<td>RAYMOND LAFLAMME</td>
<td>(University of Waterloo, Canada)</td>
<td>Advisor</td>
</tr>
<tr>
<td>BEN LANYON</td>
<td>(Institute for Quantum Optics and Quantum Information, Austria)</td>
<td>Fellow</td>
</tr>
<tr>
<td>JEREMY O'BRIEN</td>
<td>(PsiQuantum, United States)</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>DAVID POULIN</td>
<td>(Université de Sherbrooke, Canada)</td>
<td>Program Director</td>
</tr>
<tr>
<td>JOHN PRESKILL</td>
<td>(California Institute of Technology, United States)</td>
<td>Advisor</td>
</tr>
<tr>
<td>IRFAN SIDDIQI</td>
<td>(University of California, Berkeley, United States)</td>
<td>Fellow</td>
</tr>
<tr>
<td>STEPHANIE SIMMONS</td>
<td>(Simon Fraser University, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>AEPHRAIM STEINBERG</td>
<td>(University of Toronto, Canada)</td>
<td>Program Director</td>
</tr>
<tr>
<td>MATTHIAS TROYER</td>
<td>(Microsoft, United States)</td>
<td>Associate Fellow</td>
</tr>
<tr>
<td>GUIFRÉ VIDAL</td>
<td>(Perimeter Institute for Theoretical Physics, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>THOMAS VIDICK</td>
<td>(California Institute of Technology, United States)</td>
<td>Fellow</td>
</tr>
<tr>
<td>JOHN WATROUS</td>
<td>(University of Waterloo, Canada)</td>
<td>Fellow</td>
</tr>
</tbody>
</table>

Quantum Materials

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMES ANALYTIS</td>
<td>(University of California, Berkeley, United States)</td>
<td>Fellow</td>
</tr>
<tr>
<td>N. PETER ARMITAGE</td>
<td>(Johns Hopkins University, United States)</td>
<td>Fellow</td>
</tr>
<tr>
<td>LEON BALENTS</td>
<td>(University of California, Santa Barbara, United States)</td>
<td>Program Director</td>
</tr>
<tr>
<td>ANDREA DAMASCHELLI</td>
<td>(University of British Columbia, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>CLAUDIA FELSER</td>
<td>(Max Planck Institute for Chemical Physics of Solids, Germany)</td>
<td>Fellow</td>
</tr>
<tr>
<td>JOSHDUA FOLK</td>
<td>(University of British Columbia, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>LIANG FU</td>
<td>(Massachusetts Institute of Technology, United States)</td>
<td>Fellow</td>
</tr>
<tr>
<td>BRUCE GAULIN</td>
<td>(McMaster University, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>NIGEL HUSSEY</td>
<td>(Radboud University, Netherlands)</td>
<td>Advisor</td>
</tr>
<tr>
<td>PABLO JARILLO-HERRERO</td>
<td>(Massachusetts Institute of Technology, United States)</td>
<td>Fellow</td>
</tr>
<tr>
<td>HAE-YOUNG KEE</td>
<td>(University of Toronto, Canada)</td>
<td>Fellow</td>
</tr>
<tr>
<td>ALLAN MacDONALD</td>
<td>(University of Texas at Austin, United States)</td>
<td>Advisor</td>
</tr>
<tr>
<td>SATORU NAKATSUJI</td>
<td>(University of Tokyo, Japan)</td>
<td>Fellow</td>
</tr>
<tr>
<td>JOHNPIERRE PAGLIONE</td>
<td>(University of Maryland, United States)</td>
<td>Fellow</td>
</tr>
</tbody>
</table>
APPENDIX

KATE ROSS
(Colorado State University, United States)
Fellow

LOUIS TAILLEFER
(Université de Sherbrooke, Canada)
Program Director

ROSER VALENTÍ
(Goethe-Universität Frankfurt am Main, Germany)
Advisor

SUBIR SACHDEV
(Harvard University, United States)
Fellow

GÉRARD BOUCHARD
(Université du Québec à Chicoutimi, Canada)
Advisor

WENDY ESPELAND
(Northwestern University, United States)
Advisor

PETER GOUREVITCH
(University of California, San Diego, United States)
Advisory Committee Chair

DAVID GRUSKY
(Stanford University, United States)
Fellow

JANE JENSON
(Université de Montréal, Canada)
Associate Fellow

MICHELÉ LAMONT
(Harvard University, United States)
Program Director

PAIGE RAIBMON
(University of British Columbia, Canada)
Fellow

PETER HALL
(Harvard University, United States)
Associate Fellow

WILLIAM SEWELL
(University of Chicago, United States)
Associate Fellow

PAUL PIERSON
(University of California, Berkeley, United States)
Program Director

LEANNE SON HING
(University of Guelph, Canada)
Fellow

ANNE WILSON
(Wilfrid Laurier University, Canada)
Fellow

KATE ROSS
(Colorado State University, United States)
Fellow

SUBIR SACHDEV
(Harvard University, United States)
Fellow

GÉRARD BOUCHARD
(Université du Québec à Chicoutimi, Canada)
Advisor

WENDY ESPELAND
(Northwestern University, United States)
Advisor

PETER GOUREVITCH
(University of California, San Diego, United States)
Advisory Committee Chair

DAVID GRUSKY
(Stanford University, United States)
Fellow

JANE JENSON
(Université de Montréal, Canada)
Associate Fellow

MICHELÉ LAMONT
(Harvard University, United States)
Program Director

PAIGE RAIBMON
(University of British Columbia, Canada)
Fellow

PETER HALL
(Harvard University, United States)
Associate Fellow

WILLIAM SEWELL
(University of Chicago, United States)
Associate Fellow

PAUL PIERSON
(University of California, Berkeley, United States)
Program Director

LEANNE SON HING
(University of Guelph, Canada)
Fellow

ANNE WILSON
(Wilfrid Laurier University, Canada)
Fellow

KATE ROSS
(Colorado State University, United States)
Fellow

SUBIR SACHDEV
(Harvard University, United States)
Fellow

GÉRARD BOUCHARD
(Université du Québec à Chicoutimi, Canada)
Advisor

WENDY ESPELAND
(Northwestern University, United States)
Advisor

PETER GOUREVITCH
(University of California, San Diego, United States)
Advisory Committee Chair

DAVID GRUSKY
(Stanford University, United States)
Fellow

JANE JENSON
(Université de Montréal, Canada)
Associate Fellow

MICHELÉ LAMONT
(Harvard University, United States)
Program Director

PAIGE RAIBMON
(University of British Columbia, Canada)
Fellow

PETER HALL
(Harvard University, United States)
Associate Fellow

WILLIAM SEWELL
(University of Chicago, United States)
Associate Fellow

PAUL PIERSON
(University of California, Berkeley, United States)
Program Director

LEANNE SON HING
(University of Guelph, Canada)
Fellow

ANNE WILSON
(Wilfrid Laurier University, Canada)
Fellow

Successful Societies

KATE ROSS
(Colorado State University, United States)
Fellow
APPENDIX

CANADA CIFAR AI CHAIRS

AISHWARYA AGRAWAL
(Université de Montréal)
Mila

TAL ARBEL
(McGill University)
Mila

ALÁN ASPURU-GUZIK
(University of Toronto)
Vector Institute

JIMMY BA
(University of Toronto)
Vector Institute

PIERRE-LUC BACON
(Université de Montréal)
Mila

MARC BELLEMARE
(Google Brain; McGill University)
Mila

SHAI BEN-DAVID
(University of Waterloo)
Vector Institute

YOSHUA BENGIO
(Université de Montréal)
Mila

DANILO BZDOK
(McGill University)
Mila

JUAN FELIPE CARRASQUILLA
(University of Waterloo)
Vector Institute

SARATH CHANDAR
(École Polytechnique de Montréal)
Mila

ANGEL CHANG
(Simon Fraser University)
Amii

LAURENT CHARLIN
(HEC Montréal)
Mila

JACKIE CHEUNG
(McGill University)
Mila

AARON COURVILLE
(Université de Montréal)
Mila

FERNANDO DIAZ
(Microsoft Research, Montreal; McGill University)
Mila

MARC-Antonie Dilhac
(University of Montréal)
Mila

Christophe Dubach
(McGill University)
Mila

AUDREY DURAND
(University Laval)
Mila

MURAT EROGDU
(University of Toronto)
Vector Institute

AMIR-MASSOUD FARAHMAND
(University of Toronto)
Vector Institute

SANJA FIDLER
(University of Toronto; NVIDIA)
Vector Institute

DAVID FLEET
(University of Toronto; Google Brain)
Vector Institute

JAKOB FOERSTER
(University of Toronto)
Vector Institute

ALONA FYSHE
(University of Alberta)
Amii

CHRISTIAN Gagné
(Université Laval)
Mila

ANIMESH GARG
(University of Toronto; NVIDIA)
Vector Institute

PASCAL GERMAIN
(University Laval)
Mila

MARZYEH GHASSEMI
(University of Toronto)
Vector Institute

ANNA GOLDENBERG
(SickKids Research Institute; University of Toronto)
Vector Institute

GEOFFREY GORDON
(Microsoft Research, Montreal; McGill University)
Mila

ROGER GROSSE
(University of Toronto)
Vector Institute

WILLIAM HAMILTON
(McGill University)
Mila

SIMON LACOSTE-JULIEN
(University de Montréal; Samsung)
Mila

HUGO LAROCHELLE
(Google Brain; Université de Montréal)
Mila

FRANÇOIS LAVIOLETTE
(University Laval)
Mila

NICOLAS LE ROUX
(Google Brain; McGill University)
Mila

KEVIN LEYTON-BROWN
(University of British Columbia)
Amii

CHRIS J. MADDISON
(University of Toronto)
Vector Institute

RUPAM MAHMOOD
(University of Alberta)
Amii

ALIREZA MAKHZANI
(University of Toronto)
Vector Institute

SHEILA McILRAITH
(University of Toronto)
Vector Institute

IOANNIS MITILAGKAS
(Université de Montréal)
Mila
QUAID MORRIS
(University of Toronto)
Vector Institute

SARA MOSTAFAVI
(University of British Columbia)
Vector Institute

LILI MOU
(University of Alberta)
Amii

TIM O’DONNELL
(McGill University)
Mila

SAGEEV OORE
(Dalhousie University)
Vector Institute

CHRISTOPHER PAL
(Ecole Polytechnique de Montréal;
Element AI)
Mila

NICOLAS PAPERNOT
(University of Toronto)
Vector Institute

COURTNEY PAQUETTE
(McGill University)
Mila

LIAM PAULL
(Université de Montréal)
Mila

GENNADY PEKHIMENKO
(University of Toronto)
Vector Institute

JOELLE PINEAU
(Facebook AI Research, Montreal;
McGill University)
Mila

TONIANN PITASSI
(University of Toronto)
Vector Institute

PASCAL POUPART
(University of Waterloo)
Vector Institute

DOINA PRECUP
(DeepMind, McGill University)
Mila

REIHANEH RABBANY
(McGill University)
Mila

GUILLEME RABUSSEAU
(Université de Montréal)
Mila

SIAMAK RAVANBAKHSH
(McGill University)
Mila

SIVA REDDY
(McGill University)
Mila

BLAKE RICHARDS
(McGill University)
Mila

IRINA RISH
(Université de Montréal)
Mila

DANIEL ROY
(University of Toronto)
Vector Institute

FRANK RUDZICZ
(Li Ka Shing Knowledge Institute,
St Michael’s Hospital; University of
Toronto)
Vector Institute

MARK SCHMIDT
(University of British Columbia)
Amii

ANGELA SCHOEGLIG
(University of Toronto)
Vector Institute

LEONID SIGAL
(University of British Columbia)
Vector Institute

NATHAN STURTEVANT
(University of Alberta)
Amii

CSABA SZEPESVÁRI
(DeepMind; University of Alberta)
Amii

JIAN TANG
(HEC Montréal)
Mila

GRAHAM TAYLOR
(University of Guelph)
Vector Institute

MARTIN VALLIÈRES
(Université de Sherbrooke)
Mila

PASCAL VINCENT
(Facebook AI Research, Montreal;
University of Toronto)
Mila

BO WANG
(Peter Munk Cardiac Centre,
University Health Network;
University of Toronto)
Vector Institute

ADAM WHITE
(University of Alberta)
Amii

MARTHA WHITE
(University of Alberta)
Amii

FRANK WOOD
(University of British Columbia)
Mila

JAMES WRIGHT
(University of Alberta)
Amii

YAOLIANG YU
(University of Waterloo)
Vector Institute
In 2019-2020, CIFAR Fellows, Advisors, CIFAR Azrieli Global Scholars and Canada CIFAR AI Chairs received **105 major awards and honours**. In addition, Rebecca Finlay, Vice-President, Engagement & Public Policy, CIFAR was elected as a Fellow of the American Association for the Advancement of Science and James Peebles, a founding fellow of CIFAR’s Cosmology & Gravity program (now Gravity & the Extreme Universe), received a 2019 Nobel Prize in Physics.

SELECTED AWARDS & HONOURS RECEIVED

AWARDS

3M NON-TENURED FACULTY AWARD (USA)
- **Ximin He** (University of California, Los Angeles) Bio-inspired Solar Energy and CIFAR Azrieli Global Scholars

AI 2000 MOST INFLUENTIAL SCHOLARS – MACHINE LEARNING 2020 (AMINER, CHINA)
- **Jimmy Ba** (University of Toronto and Vector Institute) Learning in Machines & Brains and Canada CIFAR AI Chairs
- **Joshua Bengio** (Université de Montréal and Mila) Learning in Machines & Brains and Canada CIFAR AI Chairs
- **Aaron Courville** (Université de Montréal and Mila) Learning in Machines & Brains and Canada CIFAR AI Chairs
- **Geoffrey Hinton** (University of Toronto, Vector Institute and Google Research) Learning in Machines & Brains

AI 2000 MOST INFLUENTIAL SCHOLARS – SPEECH RECOGNITION 2020 (AMINER, CHINA)
- **Geoffrey Hinton** (University of Toronto, Vector Institute and Google Research) Learning in Machines & Brains

ALFRED P. SLOAN RESEARCH FELLOW (ALFRED P. SLOAN FOUNDATION, USA)
- **Renée Hložek** (University of Toronto) Gravity & the Extreme Universe and CIFAR Azrieli Global Scholars
- **Adrian Liu** (McGill University) Gravity & the Extreme Universe and CIFAR Azrieli Global Scholars

AWARD FOR EXCELLENCE IN MATERIALS CHEMISTRY (CANADIAN SOCIETY FOR CHEMISTRY)
- **Curtis Berlinguette** (University of British Columbia) Bio-inspired Solar Energy

BARRINGTON MOORE BOOK AWARD (AMERICAN SOCIOLOGICAL ASSOCIATION)
- **Andreas Wimmer** (Columbia University) Boundaries, Membership & Belonging

BBVA FOUNDATION FRONTIERS OF KNOWLEDGE AWARD (SPAIN)
- **Philippe Aghion** (Collège de France) Institutions, Organizations & Growth
- **Gilles Brassard** (Université de Montréal) Quantum Information Science
- **Bernhard Schölkopf** (Max Planck Institute for Intelligent Systems) Learning in Machines & Brains

BREAKTHROUGH PRIZE IN FUNDAMENTAL PHYSICS (USA)
- **Daryl Haggard** (McGill University) CIFAR Azrieli Global Scholar Alumni (Gravity & the Extreme Universe)
- **Ue-Li Pen** (University of Toronto) Gravity & the Extreme Universe

C. L. DE CARVALHO-HEINEKEN PRIZE FOR COGNITIVE SCIENCE (ROYAL NETHERLANDS ACADEMY OF ARTS AND SCIENCES)
- **Robert Zatorre** (McGill University) Azrieli Program in Brain, Mind & Consciousness

CAMILLE DREYFUS TEACHER-SCHOLAR AWARD (CAMILLE AND HENRY DREYFUS FOUNDATION, USA)
- **Gabriela Schlau-Cohen** (Massachusetts Institute of Technology) Bio-inspired Solar Energy and CIFAR Azrieli Global Scholar Alumni

CLAIR C. PATTERSON AWARD (GEOCHEMICAL SOCIETY, USA)
- **Barbara Sherwood Lollar** (University of Toronto) Earth 4D: Subsurface Science & Exploration

CREATIVE DESTRUCTION LAB IDEA AWARD (CANADA)
- **Alán Aspuru-Guzik** (University of Toronto and Vector Institute) Bio-inspired Solar Energy and Canada CIFAR AI Chairs
- **Raquel Urtasun** (University of Toronto) Learning in Machines & Brains

APPENDIX
DISCOVERY ACCELERATOR SUPPLEMENT (NATIONAL SCIENCES AND ENGINEERING RESEARCH COUNCIL, CANADA)

Blake Richards (McGill University and Mila) Learning in Machines & Brains and Canada CIFAR AI Chairs

DOROTHY CROWFOOT HODGKIN AWARD (THE PROTEIN SOCIETY, USA)

Catherine Drennan (Massachusetts Institute of Technology) Bio-inspired Solar Energy

EARLY-CAREER SPOTLIGHT AWARD (ROBOTICS: SCIENCE AND SYSTEMS FOUNDATION, USA)

Angela Schoellig (University of Toronto and Vector Institute) Canada CIFAR AI Chairs

ENGINEERING MEDAL FOR ENGINEERING EXCELLENCE (PROFESSIONAL ENGINEERS OF ONTARIO, CANADA)

Goldie Nejat (University of Toronto) Innovation, Equity & the Future of Prosperity

EPIQS EXPERIMENTAL INVESTIGATOR (GORDON AND BETTY MOORE FOUNDATION, USA)

Peter Armitage (Johns Hopkins University) Quantum Materials

Facebook Pyrobot: Democratizing Robotics Research Award (USA)

Liam Paull (Université de Montréal and Mila) Canada CIFAR AI Chairs

FACULTY EARLY CAREER DEVELOPMENT (CAREER) AWARD (NATIONAL SCIENCE FOUNDATION, USA)

Prineha Narang (Harvard University) Bio-inspired Solar Energy and CIFAR Azrieli Global Scholars

FRIEDRICH WILHELM BESSEL RESEARCH AWARD (ALEXANDER VON HUMBOLDT FOUNDATION, GERMANY)

Tobias Rees (New School and Berggruen Institute) Humans & the Microbiome

GOOGLE FACULTY RESEARCH AWARD (USA)

Kyunghyun Cho (New York University) Learning in Machines & Brains and CIFAR Azrieli Global Scholar Alumni

GOOGLE QUANTUM RESEARCH AWARD (USA)

Juan Felipe Carrasquilla (University of Waterloo and Vector Institute) Canada CIFAR AI Chairs

HAMBURG PRIZE FOR THEORETICAL PHYSICS (GERMANY)

Matthias Troyer (Microsoft) Quantum Information Science

JAN SÖDERBERG FAMILY PRIZE IN ECONOMICS AND MANAGEMENT (SWEDEN)

Nathan Nunn (Harvard University) Boundaries, Membership & Belonging

JOHN BATES CLARK MEDAL (AMERICAN ECONOMIC ASSOCIATION)

Melissa Dell (Harvard University) Institutions, Organizations & Growth

JOHN CHARLES POLANYI PRIZE (GOVERNMENT OF ONTARIO AND COUNCIL OF ONTARIO UNIVERSITIES)

Maria Drouot (University of Toronto) Gravity & the Extreme Universe and CIFAR Azrieli Global Scholars

JOSEPH O. HIRSCHFELDER PRIZE IN THEORETICAL CHEMISTRY (THEORETICAL CHEMISTRY INSTITUTE, USA)

Sharon Hammes-Schiffer (Yale University) Bio-inspired Solar Energy

KILLAM PRIZE FOR THE NATURAL SCIENCES (CANADA COUNCIL FOR THE ARTS)

Barbara Sherwood-Lollar (University of Toronto) Earth 4D: Subsurface Science & Exploration

KÖRBER EUROPEAN SCIENCE PRIZE (KÖRBER FOUNDATION, GERMANY)

Bernhard Schölkopf (Max Planck Institute for Intelligent Systems) Learning in Machines & Brains

KYUNG-AHM PRIZE (KYUNG-AHM EDUCATION & CULTURAL FOUNDATION, SOUTH KOREA)

Keun Lee (Seoul National University) Innovation, Equity & the Future of Prosperity

LIFETIME ACHIEVEMENT AWARD (CANADIAN IMAGE PROCESSING AND PATTERN RECOGNITION SOCIETY)

David Fleet (University of Toronto and Vector Institute) Canada CIFAR AI Chairs

MACARTHUR FELLOWSHIP (MACARTHUR FOUNDATION, USA)

Jenny Tung (Duke University) Child & Brain Development

MICROSOFT RESEARCH FACULTY FELLOWSHIP (MICROSOFT, USA)

Chelsea Finn (Stanford University) Learning in Machines & Brains

MISSION AWARD (SOCIETY FOR THE IMPROVEMENT OF PSYCHOLOGICAL SCIENCE, USA)

Laurel Trainor (McMaster University) Azrieli Program in Brain, Mind & Consciousness

Sandra Waxman (Northwestern University) Azrieli Program in Brain, Mind & Consciousness
NATHAN ROSEN PRIZE IN EXPERIMENTAL PHYSICS (ISRAEL PHYSICAL SOCIETY)
Iair Arcavi (Tel Aviv University) Gravity & the Extreme Universe and CIFAR Azrieli Global Scholars

NATURE'S 10 PEOPLE WHO MATTERED THIS YEAR (2019)
Victoria Kaspi (McGill University) Gravity & the Extreme Universe

NEW HORIZONS PRIZE (FUNDAMENTAL PHYSICS BREAKTHROUGH PRIZE, USA)
Kendrick Smith (Perimeter Institute for Theoretical Physics) Gravity & the Extreme Universe

NEW INVESTIGATOR AWARD (CANADIAN SOCIETY FOR IMMUNOLOGY)
Jean-Philippe Julien (Hospital for Sick Children) Molecular Architecture of Life and CIFAR Azrieli Global Scholars

NOBEL LAUREATE SIGNATURE AWARD FOR GRADUATE EDUCATION IN CHEMISTRY (AMERICAN CHEMICAL SOCIETY)
Yogesh Surendranath (Massachusetts Institute of Technology) Bio-inspired Solar Energy and CIFAR Azrieli Global Scholars

NSERC INDUSTRIAL RESEARCH CHAIR (GOOGLE AND NATURAL SCIENCES AND ENGINEERING RESEARCH COUNCIL, CANADA)
Alán Aspuru-Guzik (University of Toronto and Vector Institute) Bio-inspired Solar Energy and Canada CIFAR AI Chairs

OLIVER E. BUCKLEY CONDENSED MATTER PHYSICS PRIZE (AMERICAN PHYSICAL SOCIETY)
Pablo Jarillo-Herrero (Massachusetts Institute of Technology) Quantum Materials

OTHEMER GOLD MEDAL (SCIENCE HISTORY INSTITUTE, USA)
Dame Carol Robinson (University of Oxford) Molecular Architecture of Life

PRESIDENTIAL EARLY CAREER AWARD FOR SCIENTISTS AND ENGINEERS (PECASE) (USA)
Nathaniel Gabor (University of California, Riverside) Bio-inspired Solar Energy and CIFAR Azrieli Global Scholar Alumni

ROYAL MEDAL (ROYAL SOCIETY, UNITED KINGDOM)
Dame Carol Robinson (University of Oxford) Molecular Architecture of Life

SCIALOG FELLOW (RESEARCH CORPORATION FOR SCIENCE ADVANCEMENT, USA)
Nathaniel Gabor (University of California, Riverside) Bio-inspired Solar Energy and CIFAR Azrieli Global Scholar Alumni

WOLF PRIZE FOR PHYSICS (WOLF FOUNDATION, ISRAEL)
Pablo Jarillo-Herrero (Massachusetts Institute of Technology) Quantum Materials

HONOURS

CORRESPONDING FELLOW OF THE BRITISH ACADEMY
Michèle Lamont (Harvard University) Successful Societies
Hazel Markus (Stanford University) Boundaries, Membership & Belonging

FELLOW OF THE AMERICAN ACADEMY OF ARTS AND SCIENCES
Catherine Drennan (Massachusetts Institute of Technology) Bio-inspired Solar Energy

WILLIAM DAWSON SCHOLAR (CANADA)
Adrian Liu (McGill University) Gravity & the Extreme Universe

WISTEM2D SCHOLARS AWARD (JOHNSON & JOHNSON)
Carolina Tropini (University of British Columbia) Humans & the Microbiome and CIFAR Azrieli Global Scholars

WOLF PRIZE FOR PHYSICS (WOLF FOUNDATION, ISRAEL)
Pablo Jarillo-Herrero (Massachusetts Institute of Technology) Quantum Materials
Allan MacDonald (University of Texas at Austin) Quantum Materials

Karen Guillemin (University of Oregon) Humans & the Microbiome
Joseph Heitman (Duke University) Fungal Kingdom: Threats & Opportunities
APPENDIX

Victoria Orphan (California Institute of Technology) Earth 4D: Subsurface Science & Exploration
Eva Silverstein (Stanford University) Gravity & the Extreme Universe

FELLOW OF THE AMERICAN ACADEMY OF MICROBIOLOGY
David Blehert (United States Geological Survey) Fungal Kingdom: Threats & Opportunities
Christina Cuomo (Broad Institute) Fungal Kingdom: Threats & Opportunities
Matthew Fisher (Imperial College London) Fungal Kingdom: Threats & Opportunities
Sarah Gurr (University of Exeter) Fungal Kingdom: Threats & Opportunities
Hailing Jin (University of California, Riverside) Fungal Kingdom: Threats & Opportunities
Jason Stajich (University of California, Riverside) Fungal Kingdom: Threats & Opportunities
Eva Stukenbrock (Max Planck Institute of Evolutionary Biology) Fungal Kingdom: Threats & Opportunities

FELLOW OF THE GEOLOGICAL SOCIETY OF AMERICA
Jennifer McIntosh (University of Arizona) Earth 4D: Subsurface Science & Exploration

FELLOW OF THE LATIN AMERICAN ACADEMY OF SCIENCES
Maria Gloria Dominguez-Bello (Rutgers University) Humans & the Microbiome

FELLOW OF THE ROYAL SOCIETY (UNITED KINGDOM)
Joshua Bengio (Université de Montréal and Mila) Learning in Machines & Brains and Canada CIFAR AI Chairs

FOREIGN ASSOCIATE OF THE NATIONAL ACADEMY OF SCIENCES (USA)
Brenda Andrews (University of Toronto) Genetic Networks
Lewis Kay (University of Toronto) Molecular Architecture of Life

FOREIGN MEMBER OF THE ROYAL SOCIETY (UNITED KINGDOM)
Regine Kahmann (Max Planck Institute for Terrestrial Microbiology) Fungal Kingdom: Threats & Opportunities

GEOCHEMISTRY FELLOW (GEOCHEMICAL SOCIETY AND THE EUROPEAN ASSOCIATION OF GEOCHEMISTRY)
Barbara Sherwood Lollar (University of Toronto) Earth 4D: Subsurface Science & Exploration

HONORARY FELLOW OF THE JOHN BELL INSTITUTE FOR THE FOUNDATIONS OF PHYSICS
Aephraim Steinberg (University of Toronto) Quantum Information Science

INTERNATIONAL MEMBER OF THE NATIONAL ACADEMY OF ENGINEERING (USA)
Claudia Felser (Max Planck Institute for Chemical Physics of Solids) Quantum Materials

LEGACY FELLOW OF THE AMERICAN ASTRONOMICAL SOCIETY
J. Richard Bond (University of Toronto) Gravity & the Extreme Universe

MEMBER OF THE COLLEGE OF NEW SCHOLARS, ARTISTS AND SCIENTISTS (ROYAL SOCIETY OF CANADA)
Jean-Philippe Julien (Hospital for Sick Children, Toronto) Molecular Architecture of Life and CIFAR Azrieli Global Scholars

MEMBER OF THE EUROPEAN ACADEMY OF SCIENCES
Brett Finlay (University of British Columbia) Humans & the Microbiome
Claudia Felser (Max Planck Institute for Chemical Physics of Solids) Quantum Materials

MEMBER OF THE SOCIETY OF MULTIVARIATE EXPERIMENTAL PSYCHOLOGY
Candice Odgers (University of California, Irvine) Child & Brain Development

MEMBER OF THE NATIONAL ACADEMY OF SCIENCES (USA)
Janet Werker (University of British Columbia) Azrieli Program in Brain, Mind & Consciousness

Aephraim Steinberg (University of Toronto) Quantum Information Science
PHOTOGRAPHY AND ILLUSTRATION CREDITS

pg 6 Source images by iStock.com
modified by Assia Merazi

pgs 9–10 Getty Images

pg 10 Source images by iStock.com
modified by Assia Merazi

pg 13 Karen Whylie

pg 15 Juan Diego Soler

pg 17 Kerstin Nees

pg 19 Institut Pasteur, Francois Gardy

pg 21 Neil Ta

pg 23 Nadia Zheng

pg 25 University of California, Irvine, Jared Lazarus

pg 27 Memorial University

pg 29 Neil Ta

pg 31 Spyros Bourboulis

pg 33 Justin Knight

pg 35 Stanford University

pg 37 Matt Scobel

pg 39 Valencia Plaza/Kike Taberner

pg 42 Neil Ta

pg 43 Neil Ta

pgs 46–47 Hsiao Ron Cheng

pg 48 Michelle Bozzetto

pg 48 Brian Simon

pg 49 Sergio Garzon

pg 55 Neil Ta

pg 57 The Walrus, Patrick Doyle

pg 58 Neil Ta

Copyright © 2020 CIFAR

All rights reserved. No part of this material may be reproduced, distributed, or transmitted in any form or by any means, including screen capturing, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews.
CIFAR is a Canadian-based global research organization that convenes extraordinary minds to address the most important questions facing science and humanity. CIFAR is supported by the governments of Canada, Alberta, British Columbia, Ontario, and Quebec as well as international partner organizations, individuals, foundations and corporations.