Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • Our Impact
    • Why CIFAR?
    • Impact Clusters
    • News
    • CIFAR Strategy
    • Nurturing a Resilient Earth
    • AI Impact
    • Donor Impact
    • CIFAR 40
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
    • Staff Directory
  • Support Us
  • About
    • Our Story
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
    • Statement on Institutional Neutrality
    • Research Security
  • fr
Announcement

CHIME: New Canadian telescope will map largest volume of space ever surveyed

By: CIFAR
7 Sep, 2017
September 7, 2017
post_content

A Canadian telescope with unprecedented abilities to image the sky and capture signals from space was unveiled on September 7th in Kaleden, B.C. The newly completed radio telescope will open the universe to a new dimension of scientific study thanks to key contributions from CIFAR researchers.

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a radio telescope made up of “half-pipe” reflectors with an array of radio receivers along the focus. Unlike other radio telescopes, it has no round dish and no moving parts. CHIME will survey more than half the sky each day as the Earth turns. CHIME captures radio frequencies that can map hydrogen gas in the universe, which will allow scientist to create a three-dimensional map of the largest volume of space ever surveyed. This will help us better understand the history of the universe, the nature of distant stars and will help with the study of gravitational waves.

“With the CHIME telescope we will measure the expansion history of the universe and we expect to further our understanding of the mysterious dark energy that drives that expansion ever faster. This is a fundamental part of physics that we don’t understand and it’s a deep mystery. This is about better understanding how the universe began and what lies ahead,” said Mark Halpern, a Senior Fellow in CIFAR’s Gravity & the Extreme Universe program and principal investigator with CHIME.

CHIME is a Canadian collaboration with heavy involvement from CIFAR fellows in the Gravity & the Extreme Universe program (formerly known as Cosmology & Gravity). CHIME brings together scientists from the University of British Columbia, the University of Toronto, McGill University, and the Dominion Radio Astrophysical Observatory, where the telescope was built. Researchers affiliated with CIFAR have helped bring CHIME to life from its unique design to the underlying hydrogen-mapping technique. Key members of the scientific collaboration include Halpern (UBC), CIFAR Azrieli Global Scholar alumnus Keith Vanderlinde (UofT), Senior Fellows J. Richard Bond (UofT), Matt Dobbs (McGill), Gary Hinshaw (UBC) and Ue-Li Pen (UofT).

In addition to mapping the universe, CHIME captures a frequency range that is ideal for studying fast radio bursts and radio pulsars. CIFAR Program Director and R. Howard Webster Foundation Fellow Victoria Kaspi (McGill) is the lead investigator of the CHIME extension to study transient radio signals with Senior Fellows Ingrid Stairs (UBC) and Scott Ransom (National Radio Astronomy Observatory).

CHIME-photo

As CHIME was being developed, CIFAR researchers recognized that with only a small modification to the backend system, the telescope could simultaneously measure Fast Radio Bursts.

“CHIME’s unique design will enable us to tackle one of the most puzzling new areas of astrophysics today – Fast Radio Bursts. The origin of these bizarre extragalactic events is presently a mystery, with only two dozen reported since their discovery a decade ago. CHIME is likely to detect many of these objects every day, providing a massive treasure trove of data that will put Canada at the forefront of this research,” said Kaspi.

Fast Radio Bursts last only a few thousandths of a second but are far brighter and more powerful than any known short flashes, such as pulses from radio pulsars, a form of neutron star. Their brief nature combined with technological constraints have made them difficult to detect.

The $16-million investment for CHIME was provided by the Canada Foundation for Innovation and the governments of British Columbia, Ontario, and Quebec, with additional funding from the Natural Sciences and Engineering Research Council and CIFAR.

  • Follow Us

Related Articles

  • CIFAR members among team to find first evidence of low-frequency gravitational waves
    June 29, 2023
  • The Future of Being Human
    June 06, 2023
  • CHIME team wins Brockhouse Canada Prize, CIFAR members among recipients
    October 27, 2022
  • CIFAR fellows narrow in on origin of Fast Radio Bursts
    September 16, 2020

Support Us

The Canadian Institute for Advanced Research (CIFAR) is a globally influential research organization proudly based in Canada. We mobilize the world’s most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity’s biggest problems, together. We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations.

Donate Now
CIFAR footer logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2025 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

Fields marked with an * are required

Je préfère m’inscrire en français (cliquez ici).


Subscribe to our CIFAR newsletters: *
    Social Security#
subscribe form

You can unsubscribe from these communications at any time. View our privacy policy.


As a subscriber you will also receive a digital copy of REACH, our annual magazine which highlights our researchers and their breakthroughs with long-form features, interviews and illustrations.


Please provide additional information if you would like to receive a print edition of REACH.


This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more

Notifications