Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • Our Impact
    • Why CIFAR?
    • Impact Clusters
    • News
    • CIFAR Strategy
    • Nurturing a Resilient Earth
    • AI Impact
    • Donor Impact
    • CIFAR 40
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
    • Staff Directory
  • Support Us
  • About
    • Our Story
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
    • Statement on Institutional Neutrality
    • Research Security
  • fr
CIFAR Azrieli Global Scholars

Finding the line between life and death

By: Cynthia Macdonald
1 May, 2019
May 1, 2019
Hyun Youk

Hyun Youk knows more than most about resurrection.

Thirteen years ago, the CIFAR Azrieli Global Scholar was enrolled as a PhD student in physics at MIT. Soon after he started interning in a nanotechnology lab, however, things started to go awry. “Basically, I was fired,” he says. “I was messing up experiments and they let me go.”

HyunYouk-profileYouk wasn’t sure what he should do next, but his scientist’s curiosity would soon provide an answer.

Walking to work, he’d noticed laughter ringing from inside the biophysics lab run by Professor Alexander van Oudenaarden. Youk didn’t know anything about biology (“I didn’t understand the difference between DNA and RNA, because the last time I’d taken biology was in high school,” he says) but he needed a new lab in which to work. Also, van Oudenaarden’s students were obviously enjoying themselves. So Youk decided to offer his services there – even if that meant starting an entirely different career than the one he’d planned.

Since then, Youk has won multiple awards for his research, and is currently a principal investigator at the Delft University of Technology in the Netherlands. Operating at the interface between biology and physics, he uses mathematical rules to explain how living systems behave.

With his career well established, he’s now specializing in resurrection of a different sort: this time, as it pertains to cells. “Why is it that for certain life forms, you can stop life, then resume it just by pushing a button?” he asks.

In his lab, Youk has been trying to zero in on the quantitative principles that set living systems apart from non-living ones. To a biologist, a cell might be considered “alive” when it has the ability to replicate itself and manufacture proteins. But Youk points out that objects such as seeds or yeast spores can’t do these things; technically, they are dead.

Why is it that for certain life forms, you can stop life, then resume it just by pushing a button?

Until energized with nutrients, that is. At this point they begin engaging in activities consistent with cellular life. Before that, one might say they are simply dormant, existing at a kind of crossroads between the two states.

But recently, Youk’s lab has developed a groundbreaking method for tricking dormant yeast spores into manufacturing proteins without the aid of any nutrients at all.

“We’ve also found that we can quantify this – and this is where the physics comes in – assigning a number for each spore based on its ability to make proteins. This tell us how far away they are from being able to replicate themselves, and also how far away they are from losing function altogether.”

This is work that calls into question what “life” really is. At the microscopic level, there really is no agreed-on definition. Biologists know that human cells, for example, continue to divide and make proteins for some time after a person dies. And to a physicist, there is arguably never any such thing as death; whether person, plant or object, everything is made of atoms that are simply reconstituted in other ways upon our destruction.

Youk’s research is truly interdisciplinary, with the potential to engage philosophers as well as those working in biology and physics. “If we can stop life in certain organisms and then resume it,” he asks, “how far can you push that?”

  • Follow Us

Related Articles

  • CIFAR Roundtables on Cancer and the Dark Genome
    September 29, 2022
  • CIFAR Workshop on Astronomy/Cosmology and Artificial Intelligence
    July 19, 2022
  • In Memoriam: Werner Israel (1931-2022)
    June 01, 2022
  • Accelerating Progress in Fungal Diagnostics
    October 20, 2021

Support Us

The Canadian Institute for Advanced Research (CIFAR) is a globally influential research organization proudly based in Canada. We mobilize the world’s most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity’s biggest problems, together. We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations.

Donate Now
CIFAR footer logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2025 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

Fields marked with an * are required

Je préfère m’inscrire en français (cliquez ici).


Subscribe to our CIFAR newsletters: *

You can unsubscribe from these communications at any time. View our privacy policy.


As a subscriber you will also receive a digital copy of REACH, our annual magazine which highlights our researchers and their breakthroughs with long-form features, interviews and illustrations.


Please provide additional information if you would like to receive a print edition of REACH.


This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more

Notifications