Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • About
    • Our Story
    • CIFAR 40
    • Awards
    • Partnerships
    • President’s Message
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
  • News
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Staff Directory
    • Leadership
  • Programs
    • Research Programs
    • Knowledge Mobilization
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
    • Global Call for Ideas
    • Action on Covid-19
  • Events
    • Public Events
    • Invitation-only Meetings
  • Support Us
  • fr
  • Home
  • Bio

Follow Us

Mijung Park

Mijung Park

Appointment

  • Canada CIFAR AI Chair
  • Pan-Canadian AI Strategy

Connect

Website

About

Mijung’s primary focus is on building privacy-preserving machine learning algorithms using a sophisticated mathematical notion called differential privacy. Her other research interests include: compressing neural network models using Bayesian methods, and; understanding the relationships between differential privacy and other emerging notions in machine learning such as fairness, interpretability, and causality.

Relevant Publications

  • Harder, F., Adamczewski, Park, M. DP-MERF: Differentially Private Mean Embeddings with Random Features for Practical Privacy-preserving Data Generation, Artificial Intelligence and Statistics 2021, PMLR 130:1819‑1827

  • Adamczewski K., Park, M. Dirichlet Pruning for Convolutional Neural Networks, Artificial Intelligence and Statistics 2021, PMLR 130:3637‑3645

  • Harder, F., Bauer, M., Park, M. Interpretable and Differentially Private Predictions, AAAI Conference on Artificial Intelligence 2020, 34(04), 4083‑4090.

  • Park M.,  Foulds, J., Chaudhuri, K., Welling, M. Variational Bayes in Private Settings (VIPS), Journal of Artificial Intelligence Research 2020.

  • Park, M., Foulds, J., Chaudhuri, K., Welling, M. DP-EM: Differentially Private Expectation Maximization, Artificial Intelligence and Statistics (AISTATS) 2017, PMLR 54:896‑904.

Institution

  • Amii
  • University of British Columbia

Department

Computer Science

Education

  • PhD (Electrical and Computer Engineering), University of Texas at Austin, Austin, Texas, USA
  • Masters (Electrical and Computer Engineering), University of Texas at Austin, Austin, Texas, USA
  • Bachelor (Electrical and Computer Engineering), Hanyang University, Seoul, South Korea

Country

  • Canada

Support Us

CIFAR is a registered charitable organization supported by the governments of Canada, Alberta and Quebec, as well as foundations, individuals, corporations and Canadian and international partner organizations.

Donate Now
CIFAR header logo

Subscribe

Stay up to date on news & ideas from CIFAR.

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2022 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap
This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more