Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • Our Impact
    • Why CIFAR?
    • Impact Clusters
    • News
    • CIFAR Strategy
    • Nurturing a Resilient Earth
    • AI Impact
    • Donor Impact
    • CIFAR 40
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
    • Staff Directory
  • Support Us
  • About
    • Our Story
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
    • Statement on Institutional Neutrality
    • Research Security
  • fr
Event Brief

CIFAR workshop on quantum networks

By: CIFAR
15 Sep, 2017
September 15, 2017
Industry Illustration

EXECUTIVE SUMMARY

The two-day workshop brought together Fellows from CIFAR’s program in Quantum Information Science along with leaders in academia, industry and government to discuss, from a research and development perspective, the progress to date, major bottlenecks and future opportunities related to the development of quantum repeaters and their integration into large-scale quantum networks. Presentations, all of which were invited, focused on the state-of-the-art of the science and open problems. Topics included applications, protocols, components, interfaces, and strategy to create partnerships with industry and other stakeholders.

The backdrop for a discussion on quantum networks is the expectation that, with major efforts from academic researchers and industry players (e.g. Google, IBM, Microsoft, D-wave), quantum computers (QC) will become available in foreseeable future. This splits quantum network applications into one class that seeks to overcome the security issues caused by QC (such as QKD, secret sharing, etc), one class that seeks to utilize the unique capabilities of QC (such as quantum cloud-computing, blind quantum computing, etc.), and one class aimed at quantum-enhanced sensing. Important to note in these contexts is a) that mathematics-based approaches, which are also believed to protect privacy against QC, currently have more support than quantum cryptography and b) that the possibility to link modular quantum computing units is already being investigated in the QC community, e.g. to overcome physical constraints in dilution fridges.

The quantum links making up a quantum network will, depending on distance and environments, likely consist of different types of channels e.g. free-space satellite and ground links as well as fibre-optic links. In recent years, capabilities of both satellite and real-world fibre-links have grown at a fast pace, with Canadian researchers at the forefront. For long-distance, fibre-based links quantum repeaters are needed, possibly using different protocols, e.g., based on discrete or continuous variables, each presenting a set of advantages and challenges.

The individual components for a network are at varying levels of maturity and quality. Single-photon sources based on spontaneous parametric down-conversion of four-wave mixing are extremely reliable but suffer from a trade-off between rate and purity. Single-emitter based sources, such as quantum-dots and diamond colour centres, have progressed at a fast pace over the past few years but still face a number of engineering problems to increase coupling efficiency, spectral stability, and yield. High efficiency single-emitter based sources operating at telecom wavelengths, though highly desired, have yet to be demonstrated.  With quantum dot sources having reached a certain level of maturity, development of ‘plug and play’ demonstrator units would go a long way in accelerating the implementation of these sources in quantum network test-beds.

The availability of fast and efficient superconducting detectors — even on the commercial market — has removed wavelength limitations of previously-used avalanche photo-detectors, thus facilitating the use of telecom-wavelength photons. Remaining challenges are to incorporate detection of multiplexed degrees of freedom e.g. spectrally resolving detectors. The development of suitable quantum memory — both based on single emitters (such as NV centres) as well as ensembles (e.g. rare-earth-ion-doped crystals) — is still challenging in that no currently operating memory meets all the benchmarks desirable in a quantum repeater/network.  Quantum transducers that link optically encoded quantum states to microwave qubits usable in superconducting QC are the least mature component. Several approaches are currently being pursued, with those based on nano-mechanical oscillators currently leading the way. However, no system has yet demonstrated transduction at the quantum level. It is likely that transducers will be the main bandwidth-limiting component in a network. We note that QC platforms based on, e.g., trapped ions and quantum dots possess optical transitions and thus eliminate the need for a transducer.

An organizational problem is that there is too little incentive to tackle engineering problems, optimize components to meet all requirements (not just excel at one) and develop and analyze complete (and integrated) systems. More collaborations and the creation of test-beds where researchers with different skills can come together would help to remove this obstacle. In addition, test-beds are a good way to showcase research to industry, decision-makers and the public. The prospect of job-creation and opportunities for generating spin-off enterprises must be communicated. A good example is the new European Quantum Technology Flagship Initiative. The Quantum Canada initiative, along with subsidiary fora, is currently exploring a similar approach in Canada.

Industry can provide both investment and a market for the technologies that researchers develop and leverage their connection with decision makers in the government. But for the private sector to get involved in the development of quantum networks, the academic research community and industry must learn how to work together and create mutual understanding of each other’s objectives and problems. Entities such as the Canadian Photonics Industry Consortium could have an important role along with intermediary organizations and University Industry offices. It may be that Canada’s funding ecosystem is missing a piece for strategic and ground-breaking innovation (similar to DARPA in the US) or an entity that will incubate and fund start-ups in the quantum technology space. Government also has an important role to play as a first adopter of new quantum technology, e.g. quantum secured communication links. This would then provide an incentive for an industrial ecosystem to develop.

To make a quantum network a truly compelling proposition to decision-makers and the public we must formulate a simple and clear grand vision as captured by the term “moon-shot”. This vision can feature a single clear and captivating goal, such as Teleporting from coast-to-coast, which is based on technologies that hold commercial and strategic value that can engage industry and government. Given the growing public attention to online privacy, a term like transforming cyber-security could also be used. It is important to have a message that projects imagined opportunities and is not based on technical terms. We must emphasize the urgency of investing now and pointing to the risk-management aspect in a future world with widely accessible quantum computers.

  • Follow Us

Related Articles

  • New program provides expert AI advice for policymakers
    April 30, 2025
  • Strengthening Canada’s AI talent ecosystem
    April 16, 2025
  • Humans & the Microbiome: Educational Modules for Public Health Professionals
    April 10, 2025
  • The value of community engagement in AI deployment
    March 31, 2025

Support Us

The Canadian Institute for Advanced Research (CIFAR) is a globally influential research organization proudly based in Canada. We mobilize the world’s most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity’s biggest problems, together. We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations.

Donate Now
CIFAR footer logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2025 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

Fields marked with an * are required

Je préfère m’inscrire en français (cliquez ici).


Subscribe to our CIFAR newsletters: *

You can unsubscribe from these communications at any time. View our privacy policy.


As a subscriber you will also receive a digital copy of REACH, our annual magazine which highlights our researchers and their breakthroughs with long-form features, interviews and illustrations.


Please provide additional information if you would like to receive a print edition of REACH.


This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more

Notifications