Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • Our Impact
    • Why CIFAR?
    • Impact Clusters
    • News
    • CIFAR Strategy
    • Nurturing a Resilient Earth
    • AI Impact
    • Donor Impact
    • CIFAR 40
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
    • Staff Directory
  • Support Us
  • About
    • Our Story
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
    • Statement on Institutional Neutrality
    • Research Security
  • fr
CIFAR Azrieli Global Scholars

The ABCs of B cells

By: Jon Farrow
5 Nov, 2019
November 5, 2019
Jean Philippe

Meet 2019 CIFAR Azrieli Global Scholar Jean-Philippe Julien, who uses robots to design better vaccines.

Jean-Philippe Julien, a 2019 CIFAR Azrieli Global Scholar joining the Molecular Architecture of Life program at CIFAR, is a researcher at the University of Toronto and the Hospital for Sick Children who sees antibodies as the heroes of the immune system.

“The theme in my laboratory is the power of the antibody,” he says. “I’m interested in the power of the antibody to neutralize a virus or to recognize a tumor cell and recruit the body’s defense to kill it.”

Julien examines antibodies and the cells that make them at the atomic level in order to find just the right ingredients for next-generation vaccines and cancer treatments. But Julien doesn’t do it alone. He enlists the help of a team of talented students, trainees, and robots.

A member of Jean-Philippe Julien's team at microscope
Jean-Philippe Julien’s team includes post-docs, students, and robots

Vaccines work by presenting a harmless form of a pathogen to your immune system so that your body can learn how to recognize that pathogen. “You’re trying to teach your immune system how it should respond and what type of antibodies it should make,” explains Julien, “so that when it encounters the real threat, then it’s already able to protect you and you don’t get infected.”

A type of white blood cell called a B cell is integral to this process. They learn to produce antibodies, small proteins that bind to the pathogens and signal to the rest of the body that an invader has been spotted. One B cell will learn to produce one type of antibody, which in turn will be effective at recognizing one foreign element found on the surface of the invading pathogen.

This works in principle, but if the pathogens mutate and the protein the antibody is targeting changes, then even when B-cells are perfect students, they can fail the test. Influenza vaccines, for example, are notoriously hit-and-miss. In a given year, a flu shot may only protect half of the people who get it. (Flu vaccines, despite their varying efficacy, are still worth taking. They prevent hundreds of thousands of hospitalizations and deaths every year). This is because there are many different strains of influenza all over the world, which are rapidly evolving and changing.

Julien points out, however, that the flu is stable compared to viruses like HIV. “All the diversity of influenza all over the world in one year doesn’t even match the diversity of HIV in one person at one given time,” he says.

“That’s the biggest challenge. So what do you need to put in your vaccine so that you’re not only able to teach someone’s body to recognize one virus of HIV, but all the different viruses circulating in one individual and all individuals around the world?”

Much of the work in Julien’s lab is devoted to understanding the structure and function of B-cells and antibodies. He investigates, on an atomic and molecular level, their different components and how they fit together.

Growing up in a family in the construction business in Northern Quebec, Julien draws inspiration from the blueprints he would often see at home. “When you do structural biology,” he says, “and you see how molecules move, and how atoms create an immune response, then you can start to design with really high precision. You’ve obtained the blueprints.”

To hunt for potential vaccines against HIV and Malaria, Julien’s lab studies hundreds of antibodies, each with slightly different chemical and physical characteristics. Evaluating every molecule in such a library by hand would be difficult and error-prone, so to speed up the search for effective conditions, they use robots.

The robots don’t mind staying up all night methodically dripping liquids into wells on a plate. They will even work on the weekends.

“Back in the old days,” Julien explains, “that was a big part of a graduate student’s job.” Now, with robots able to go through thousands of times more conditions than a human to see what works, trainees are freed up to hypothesize, follow up, and create.

When a potentially interesting condition is found, it is flagged by the research team, who can verify the result and start the next battery of tests.

As a CIFAR Azrieli Global Scholar, Julien will join the Molecular Architecture of Life program for a two-year term. He is particularly keen to fit his work on B cells into the wider problem of immunity and infection.

“How do you take your discovery or your approach and integrate it in the bigger picture of world challenges? There are so many techniques that are being used. And no one individual, I think, masters all of them,” he says. “So in the Molecular Architecture of Life program are some of the world leaders in these structural biology techniques. I’m excited to be able to join the program, and not only learn how to best use and integrate the tools that are here today, but to design the best tools for the next 10 to 20 years.”

  • Follow Us

Related Articles

  • CIFAR Roundtables on Cancer and the Dark Genome
    September 29, 2022
  • Accelerating Progress in Fungal Diagnostics
    October 20, 2021
  • COVID-19 may forever alter our microbiomes
    January 26, 2021
  • Obesity, heart disease, and diabetes may be communicable
    March 26, 2020

Support Us

The Canadian Institute for Advanced Research (CIFAR) is a globally influential research organization proudly based in Canada. We mobilize the world’s most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity’s biggest problems, together. We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations.

Donate Now
CIFAR footer logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2025 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

Fields marked with an * are required

Je préfère m’inscrire en français (cliquez ici).


Subscribe to our CIFAR newsletters: *

You can unsubscribe from these communications at any time. View our privacy policy.


As a subscriber you will also receive a digital copy of REACH, our annual magazine which highlights our researchers and their breakthroughs with long-form features, interviews and illustrations.


Please provide additional information if you would like to receive a print edition of REACH.


This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more

Notifications