Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • Our Impact
    • Why CIFAR?
    • Impact Clusters
    • News
    • CIFAR Strategy
    • Nurturing a Resilient Earth
    • AI Impact
    • Donor Impact
    • CIFAR 40
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
    • Staff Directory
  • Support Us
  • About
    • Our Story
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
    • Statement on Institutional Neutrality
    • Research Security
  • fr
CIFAR Azrieli Global Scholars

AI in biodiversity research crucial to our survival

By: Krista Davidson
16 Apr, 2021
April 16, 2021
graham taylor_aI in biodiversity

Rising sea levels, extreme temperatures, and the growing human population are all contributing to the mass extinction of thousands of plants, insects, and animals, at alarming rates. As many as one million species face extinction in the next several decades, with biodiversity loss a major factor. Artificial intelligence (AI) could be the key to their (and our) survival.

Graham Taylor, a Canada CIFAR AI Chair at the Vector Institute, is using machine learning for biodiversity. He is collaborating on BIOSCAN, an $180 million global initiative that aims to revolutionize our understanding of the world’s biodiversity with the help of thousands of researchers from over 30 countries. BIOSCAN is led by Paul Hebert, a Canada Research Chair and Director of the Centre for Biodiversity Genomics at the University of Guelph.

Working with the Biodiversity Institute of Ontario at the University of Guelph, Taylor is building an inventory of life on Earth using DNA barcoding. 

DNA barcoding is a groundbreaking technique used to identify the diversity of species in our ecosystem based on their DNA.  It could potentially course-correct human-related land degradation and enable researchers to develop tools to protect ecosystems against loss. The process of collecting and identifying thousands of organisms is tedious and time-consuming for humans. However, machine learning algorithms could significantly reduce the time it takes in a task where every second counts.

Taylor is taking the project a step further by using computer vision to supplement the DNA information with visual analysis, a process that will improve the robustness of the organism detection and enable biodiversity researchers to examine organisms at the genome level.

“Right now we’re facing a massive loss of information. Consider the consequences of losing these genomes, each one is one thousand times more detailed than the longest book ever written,” says Taylor, an associate professor at the University of Guelph, a Canada Research Chair in Machine Learning, and academic director, NextAI. Taylor attributes that fact to Paul Hebert.

Driven by advances in deep learning, computer vision has seen wide success in consumer applications, now deployed in phones, cars and smart appliances and used by millions of people. It’s starting to see uptake in human and animal health applications. Taylor anticipates computer vision will play a larger role in improving the health of the planet.

Barcoding has revolutionized biodiversity efforts in the past ten years. Taylor is hoping to do the same with visual identification. It would give researchers the ability to identify tens of thousands of species within seconds. 

“AI systems give us superhuman abilities in terms of species analysis for biodiversity. If we can build machines to accurately identify insects and other individuals, it will go a long way in advancing our knowledge of biodiversity loss and supporting our efforts towards conservation and protection,” he says.

Taylor is working on a number of biodiversity projects, including the LIFEPLAN, a global scale biodiversity monitoring effort which involves automating various formats of data, such as images, DNA samples, audio recordings of animal sounds, collections of fungal spores, and more. 

The project was inspired by earlier research using computer vision to identify moths for agricultural pest monitoring. Collaborating with BIO’s John Fryxell, he’s also using computer vision for the re-identification of insects for ALUS, a project that helps farmers produce valuable ecological services on Canadian farmland.

  • Follow Us

Related Articles

  • Generative AI doesn’t have to generate climate disaster
    September 25, 2023
  • CIFAR AI Insights: Towards Measuring and Mitigating the Environmental Impacts of Large Language Models
    September 25, 2023
  • CIFAR hosts AI for Energy & the Environment Symposium
    April 19, 2023
  • What will be the impact of AI-assisted robotics on humanity?
    February 15, 2023

Support Us

The Canadian Institute for Advanced Research (CIFAR) is a globally influential research organization proudly based in Canada. We mobilize the world’s most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity’s biggest problems, together. We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations.

Donate Now
CIFAR footer logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2025 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

Fields marked with an * are required

Je préfère m’inscrire en français (cliquez ici).


Subscribe to our CIFAR newsletters: *

You can unsubscribe from these communications at any time. View our privacy policy.


As a subscriber you will also receive a digital copy of REACH, our annual magazine which highlights our researchers and their breakthroughs with long-form features, interviews and illustrations.


Please provide additional information if you would like to receive a print edition of REACH.


This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more

Notifications