Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • Our Impact
    • Why CIFAR?
    • Impact Clusters
    • News
    • CIFAR Strategy
    • Nurturing a Resilient Earth
    • AI Impact
    • Donor Impact
    • CIFAR 40
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
    • Staff Directory
  • Support Us
  • About
    • Our Story
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
    • Statement on Institutional Neutrality
    • Research Security
  • fr
Advances

Irina Rish wants to solve one of AI’s biggest challenges

By: Krista Davidson
21 Jul, 2021
July 21, 2021
Irina rish

In the past several decades, there have been extraordinary advances in the way artificial intelligence (AI) machines learn. A major limitation, however,  is in their ability to acquire new knowledge while retaining existing, relevant information — in a way that would be similar to how humans learn over the course of a lifetime. Canada CIFAR AI Chair Irina Rish is a pioneer in this emerging field known as continual lifelong learning.

Artificial intelligence (AI) systems consistently outperform and outpace humans in tasks such as identifying patterns and predicting outcomes. However, these systems often lack the versatility to apply the skills they acquire to new situations over time. Rish specializes in capturing the most robust and invariant properties across different data distributions to enable systems to continually learn over time, without further training. 

“Systems are capable of adapting to new data, but when faced with new datasets and tasks, they often experience catastrophic forgetting, a process where new information washes out old information,” says Rish. “On the contrary, forgetting in human and animal brains seems to happen much more gradually, and less catastrophically.”

Rish is a faculty member at Mila, the Quebec AI Institute, and an associate professor in the Computer Science and Operations Department at the Université de Montréal. She was awarded a $34M Canada Excellence Research Chair in Autonomous AI in September 2020. She previously worked as a researcher at IBM Research in Yorktown Heights, NY.

She says there is a well-known “stability vs plasticity” trade-off in training AI systems based on neural networks, for example, a tradeoff between adapting and remembering. A system may sometimes retain information but be unable to adapt fast (too much stability, but not enough plasticity), while sometimes good adaptation may be unfortunately paired with quick forgetting. The ultimate goal of continual learning is to achieve fast adaptation while avoiding the catastrophic forgetting issue.

Continual lifelong learning systems are promising for a wide range of applications, particularly in AI for health, which is one of the focus areas for Rish. She is building models that use brain imaging data to identify different mental conditions, including disorders such as addiction and schizophrenia. Continual learning could allow us to avoid learning from scratch on new data by transferring knowledge learned from different patients and hospitals, and to ultimately extract robust brain activity patterns associated with mental conditions that are invariant across different datasets. 

Continual lifelong learning also has applications for autonomous vehicles, which typically work really well in a controlled environment, but struggle to adapt in new environments and scenarios that it’s not familiar with.

“The ultimate goal is to develop robust algorithms that can learn on their own by reusing past knowledge, while continually adapting to novel tasks. However, at the same time, the algorithm has to be smart enough to detect situations when there is nothing similar or invariant between the old and new data, and expand the model if necessary,” says Rish. “Our research aims to bridge the gap between the generalization abilities of humans and AI systems.”

 

Irina Rish is a lecturer at the 2021 CIFAR Deep Learning + Reinforcement Learning Summer School.

  • Follow Us

Related Articles

  • Three 2024 Nobel Laureates among CIFAR’s acclaimed community of researchers
    October 15, 2024
  • Canada CIFAR AI Chairs gather in Banff for annual AICan meeting
    June 20, 2024
  • Indigenous perspectives in AI
    June 18, 2024
  • How does the brain give rise to the mind?
    June 13, 2024

Support Us

The Canadian Institute for Advanced Research (CIFAR) is a globally influential research organization proudly based in Canada. We mobilize the world’s most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity’s biggest problems, together. We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations.

Donate Now
CIFAR footer logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2025 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

Fields marked with an * are required

Je préfère m’inscrire en français (cliquez ici).


Subscribe to our CIFAR newsletters: *

You can unsubscribe from these communications at any time. View our privacy policy.


As a subscriber you will also receive a digital copy of REACH, our annual magazine which highlights our researchers and their breakthroughs with long-form features, interviews and illustrations.


Please provide additional information if you would like to receive a print edition of REACH.


This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more

Notifications