Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • Our Impact
    • Why CIFAR?
    • Impact Clusters
    • News
    • CIFAR Strategy
    • Nurturing a Resilient Earth
    • AI Impact
    • Donor Impact
    • CIFAR 40
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
    • Staff Directory
  • Support Us
  • About
    • Our Story
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
    • Statement on Institutional Neutrality
    • Research Security
  • fr
  • Home
  • Bio

Follow Us

post_content

Luyi Yang

Appointment

CIFAR Azrieli Global Scholar 2016-2018

Quantum Materials

Connect

Website

About

Luyi Yang’s lab develops and uses advanced optical spectroscopies to study light-matter interactions in condensed matter physics.

Currently her group is concerned with understanding and controlling electron spin states (in certain special cases, valley states) in low-dimensional semiconductors. Examples include semiconductor quantum wells, quantum dots and two-dimensional (2D) Dirac materials (e.g., graphene and monolayer MoS2). These nanostructures not only provide new platforms to realize novel light-matter coupling, but are also extremely useful for electronics, photonics and potential quantum computing applications. Yang’s recent work directly probed very long spin relaxation and spin coherence of electrons in atomically thin transition metal dichalcogenides such as MoS2 and WS2. A new spin dephasing mechanism was discovered that is unique to these 2D Dirac materials and is not present in conventional III-V or II-VI semiconductors.

Awards

  • LANL Director’s Postdoctoral Fellowship, 2014

Relevant Publications

  • Yang, L. et al. “Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2.” Nature Physics 11 (2015): 830–34.

  • Yang, L. et al. “Spin coherence and dephasing of localized electrons in monolayer MoS2.” Nano Letters 15 (2015): 8250–8254.

  • Yang, L. et al. “Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2.” Nature Comm. 5 (2014).

  • Yang, L. et al. “Doppler velocimetry of spin propagation in a two-dimensional electron gas.” Nature Physics 8 (2012): 153–57.

  • Yang, L. et al. “Measurement of electron-hole friction in an n-doped GaAs/AlGaAs quantum well using optical transient grating spectroscopy.” Phys. Rev. Lett. 106 (2011).

Institution

Tsinghua University

Department

Department of Physics

Education

  • PhD (Experimental Condensed Matter Physics), University of California, Berkeley
  • BS (Physics and Mathematics), Tsinghua University

Country

China

Support Us

The Canadian Institute for Advanced Research (CIFAR) is a globally influential research organization proudly based in Canada. We mobilize the world’s most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity’s biggest problems, together. We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations.

Donate Now
CIFAR header logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2025 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more