Skip to content
CIFAR header logo
fr
menu_mobile_logo_alt
  • Our Impact
    • Why CIFAR?
    • Impact Clusters
    • News
    • CIFAR Strategy
    • Nurturing a Resilient Earth
    • AI Impact
    • Donor Impact
    • CIFAR 40
  • Events
    • Public Events
    • Invitation-only Meetings
  • Programs
    • Research Programs
    • Pan-Canadian AI Strategy
    • Next Generation Initiatives
  • People
    • Fellows & Advisors
    • CIFAR Azrieli Global Scholars
    • Canada CIFAR AI Chairs
    • AI Strategy Leadership
    • Solution Network Members
    • Leadership
    • Staff Directory
  • Support Us
  • About
    • Our Story
    • Awards
    • Partnerships
    • Publications & Reports
    • Careers
    • Equity, Diversity & Inclusion
    • Statement on Institutional Neutrality
    • Research Security
  • fr
News

A new approach to quantum memory

By: Cynthia Macdonald
17 Dec, 2018
December 17, 2018
post_content

When working quantum computers are finally developed, they’ll be much faster and more powerful for some purposes than the classical machines we now use.

Their ability to model chemical processes alone could revolutionize drug and materials design, leading to an exciting new era in fields such as engineering and medicine.

One of the many problems that remain to be solved, however, is how to give a quantum computer a quantum memory. Recently, physicists at the University of Alberta devised a simplified and energy-efficient way of doing this, using ultracold rubidium atoms.

Lindsay LeBlanc is a fellow in the Quantum Materials program at CIFAR. In her lab she routinely cools atoms to temperatures that are a million times colder than interstellar space. At that point, they lose the randomness associated with thermal motion, and exhibit interesting new properties.

LeBlanc’s post-doctoral fellow, Erhan Saglamyurek, suggested that clouds of such atoms might be able to store single pulses of light – photons – which could later be retrieved through the shining of a control pulse. The pair developed a method to do that, and the results of their successful experiment were published in Nature Photonics on November 5.

“Quantum memory’s not a new idea,” says LeBlanc. “But our method is less technically demanding, doesn’t use as much laser power and doesn’t require you to prepare a difficult sample. It’s also good for broadband signals, which have a large frequency range.” This could make it a helpful tool in quantum communication, which is already in limited use and, once perfected, promises to usher in a new era of hack-proof security.

Our method is less technically demanding, doesn’t use as much laser power and doesn’t require you to prepare a difficult sample. It’s also good for broadband signals, which have a large frequency range.

LeBlanc is working on extending the capability of her discovery. “The storage time isn’t very long, so that’s definitely something we’d like to improve,” she says. Her technique is currently more flash drive than hard drive, but the theory supporting it allows for longer storage over time. “Right now it’s about a microsecond, and we want to push that to a millisecond. I think we can do that using colder atoms.”

LeBlanc’s research is applicable not only to quantum computing, but to quantum materials as well: two key areas of discovery supported by CIFAR. “In all that we do,” she has written, “we are keen to better understand, from the ground up, what makes these quantum particles behave as they do.”

  • Follow Us

Related Articles

  • New program provides expert AI advice for policymakers
    April 30, 2025
  • Strengthening Canada’s AI talent ecosystem
    April 16, 2025
  • Humans & the Microbiome: Educational Modules for Public Health Professionals
    April 10, 2025
  • The value of community engagement in AI deployment
    March 31, 2025

Support Us

The Canadian Institute for Advanced Research (CIFAR) is a globally influential research organization proudly based in Canada. We mobilize the world’s most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity’s biggest problems, together. We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations.

Donate Now
CIFAR footer logo

MaRS Centre, West Tower
661 University Ave., Suite 505
Toronto, ON M5G 1M1 Canada

Contact Us
Media
Careers
Accessibility Policies
Supporters
Financial Reports
Subscribe

  • © Copyright 2025 CIFAR. All Rights Reserved.
  • Charitable Registration Number: 11921 9251 RR0001
  • Terms of Use
  • Privacy
  • Sitemap

Subscribe

Stay up to date on news & ideas from CIFAR.

Fields marked with an * are required

Je préfère m’inscrire en français (cliquez ici).


Subscribe to our CIFAR newsletters: *

You can unsubscribe from these communications at any time. View our privacy policy.


As a subscriber you will also receive a digital copy of REACH, our annual magazine which highlights our researchers and their breakthroughs with long-form features, interviews and illustrations.


Please provide additional information if you would like to receive a print edition of REACH.


This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.
Accept Learn more

Notifications